US EPA. Region III
Reviewed and Approved

ORIGINAL (Red)

SDMS DociD

D 2198334

Level III Site Inspection for Hoffman Landfill

Allegany County, Maryland

(MD-4)

Volume I

December 1992

Prepared By:

Maryland Department of the Environment

Hazardous and Solid Waste Management Administration

2500 Broening Highway

Baltimore, Maryland 21224

Prepared For:

U.S. Environmental Protection Agency

Region III

841 Chestnut Building

Philadelphia, Pennsylvania 19107

TABLE OF CONTENTS

SECT Volum				PAGE
1.0 1.1 1.2 1.3	Authorization Scope of Wor	k	and Conclusions	1
2.0 2.1 2.2 2.3	Site Description Site Use Permit and Re Remedial Act	egulator	y Actions	3
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Water Supply Surface Water Soils Geology Groundwater Meteorology	r	gd Population Distribution	6
4.0	Waste Descrip	ption		13
5.2.2 5.2.3	Previous Stud	ies A Cont sults Sampli r Samp	ling Results	14
6.0 7.0	Toxicological References	Evalua	tion	21 24
8.0 9.0 10.0	Photographs Tables Figures	·		
Appe	ndices:	I II III	Rules of Operation at Allegany County's Landfill Projects Cross Section of the Mine Pit Filling Operation Geology and Hydrology at the Hoffman Landfill	

IV Summary and Data Tables from the Water Sampling Program at the Hoffman Landfill

Attachments:

Attachment I Attachment II

Organic Data Review Inorganic Data Review

Volume II

Attachment III Attachment IV

Organic Data Package Inorganic Data Package

1.0 Introduction

1.1 Authorization

The Maryland Department of the Environment, Hazardous and Solid Waste Management Administration (MDE/HSWMA) performed this study under U. S. Environmental Protection Agency (USEPA) Cooperative Agreement #V-003577-01-0.

1.2 Scope of Work

The MDE/HSWMA was contracted to perform a Level III Site Inspection of the Hoffman Landfill (MD-04). The potential for the release of hazardous waste from the site by the way of groundwater, surface water, soil exposure and air is evaluated. The populations and sensitive environments which may be impacted are then discussed.

1.3 Executive Summary and Conclusions

The Hoffman landfill is a 22 acre landfill located near Frostburg in Allegany County, Maryland. Originally, this area served as a coal strip mine. As a demonstration project to show the effectiveness of strip mines as landfills, this abandoned coal strip mine was converted into a sanitary landfill in 1967. The site accepted approximately 225,000 tons of municipal waste from April 1967 through 1971. In addition to the municipal waste, the following companies disposed of waste at this facility: Allegany County, Hercules Corp., Celanese Corp., Kelly Springfield Tire and PPG Industries, all centered in Cumberland.

Monitoring of the facility in part was carried out by the Maryland Department of Health prior to the opening of the facility and continuing through 1971. Samples were collected from Braddock Run and the on-site pond. The results gave no evidence of degradation of the stream as a result of leachate from the landfill. The results from the on-site pond indicated that the iron content, chlorides, and total solids in the pond had increased during the landfill's operation. In addition, observation wells were installed on-site, and the results from these samplings indicated that their was no degradation of the groundwater as a result of the landfill operation.

The landfill is located in the Frostburg Industrial Park. Six buildings are located within 200 feet of the site. They are the Frostburg Heights apartment building and an associated nursing home, Rish Equipment, a small bank and two small buildings as part of a Comfort Inn hotel. Two of the buildings; the hotel and the apartment building, may partially overlie the fill area.

In addition, to Hoffman landfill, two other landfills, Vale Summit, and Cabin Run, are also located in the same area. Vale Summit is approximately 1.25 miles southwest of Hoffman, and Cabin Run in approximately 2.25 miles southwest of Hoffman.

MDE/HSWMA CERCLA Pre-Remedial Division collected samples from this site on

June 23, 1992. This sampling included the collection of one residential well sample, one municipal well sample, one monitoring well sample and a non-drinking water well, three off site and one on-site surface water and sediment samples, six on-site and one off-site soil samples and one leachate sample.

The results showed that the on-site monitoring well contained vinyl chloride at 2 ppb. The inorganics of primary concern for the groundwater are barium and beryllium which were detected in a residential well east of this site.

No organic contamination was detected in the surface water samples. All of the surface water samples contained inorganic contamination exceeding three times background concentrations. The sample which contained the lead was collected at the probable point of entry (ppe) for on-site groundwater to surface water. Since lead was detected in the on-site monitoring well and at this point, it was considered an observed release.

Various PAHs were detected in the sediment sample collected from Braddock Run. No inorganics which fit the requirement for an observed release were detected in the sediment samples.

The soil sampling results showed very low concentrations of fluoranthene and mercury in the on-site samples.

2.0 Site Description

The Hoffman Landfill was designed as an experimental landfill to test the efficiency of using strip mines as sanitary landfills. The Hoffman Landfill covers an area of 22 acres, and is located on the southeast edge of the city of Frostburg, in Allegany County, Maryland (Figure 1). It is adjacent to, and partly underlies, the Frostburg Industrial Park. The site is accessible through the industrial park, which is located on Route 36 (Figure 2 & 3).

Hoffman Landfill is approximately 3 hours from Baltimore and can be reached by taking Interstate 70 west to Interstate 68 west to State Highway 36. The site is located on the Frostburg, Maryland topographic quadrangle, and the international coordinates of the site are 39°38'30" north latitude by 78°54'30" west longitude. The Maryland Grid Coordinates are 665,333 north by 263,278 east.

The area surrounding the site is rural and commercial, with residential areas nearby in Frostburg and Eckhart Mines. The bulk of the site is empty grassland which is located between the buildings of the industrial park. The exact limits of the landfill are not apparent on the surface, and are not entirely agreed upon in file reports. Figure 3 shows the approximate outline of the landfill and surrounding buildings.

Six buildings are located within 200 feet of the site. They are the Frostburg Heights apartment building and an associated nursing home, Rish Equipment, a small bank and two small buildings as part of a Comfort Inn hotel. Two of the buildings; the hotel and the apartment building, may partially overlie the fill area, but engineering studies associated with the apartment building concluded that the actual fill area was 30 to 50 feet to the east. The road to the industrial park also partly covers the site. Beall High School is located 0.7 miles northwest of the site, and the topographic map of the area shows at least three other schools in central Frostburg, 1.5 miles northwest.

The landfill is approximately 1900 feet long, 50 feet wide at the bottom and 110 feet wide at the top. The depth of the landfill ranges from 30-50 feet. The total volume of the pit is over a quarter of a million yd³. The two problems which needed to be addressed before this area could be considered as a potential landfill site were:

- 1) finding a location that offered sufficient cover material
- 2) ensuring that a sufficient liner existed in the landfill to prevent groundwater contamination.

First, it was determined that the adjacent spoil earth, which is the overburden and reject coal, was sufficient cover. In addition, adequate cover material was also available from the sides of the original mine walls. It was discovered that the spoil material breaks down under the weight of earth-moving equipment. The breakdown products include a mixture of small grained sand, silt, and clay which is suitable for cover material.

Once it was found that there was sufficient cover material, the next step was to ensure that an appropriate liner existed in the old excavation pit. It was found that the coal seam rested on solid rock which was determined to be relatively impervious since water from recent rains was still standing in the pit. In addition, to the rock stratum, a three foot layer of the spoil material mentioned above, was compacted to cover these rock (Appendix II)⁵.

In addition, to Hoffman Landfill, two other landfills, Vale Summit, and Cabin Run, are also located in the same area. Vale Summit is approximately 1.25 miles southwest of Hoffman, and Cabin Run in approximately 2.25 miles southwest of Hoffman (see enclosed topographic map).

There are no potable wells on the site although there are monitoring wells, some of which seem to have been paved over.

The topography is very hilly with elevations ranging from 1300-2240 feet (Figure 4). The site is at an elevation of 2050 feet. A pond is located 50 feet south east of the site.

2.1 Site Use

Coal was first discovered in the Georges Creek Basin in 1782, and the area became the principle coal producing basin for Maryland. 15,17 The topographic map of the area indicates that extensive strip mining as well as underground mining has occurred in the area. 14

The site itself is an abandoned coal strip mine (dates of operation unknown) which was converted to a sanitary landfill in 1967. The strip mine was about 1900 feet long, 110 feet wide at one end and 50 feet wide at the other, and was 50 feet deep. The coal bed mined is unknown, but was presumed to be Lower Sewickley (also known as Tyson) coal, which is about 2 feet thick at the site.⁵

The site was originally owned by the Pittsburgh Consolidation Coal Company. In 1963 Maryland Coal and Reality bought the land. As of this Site Inspection, Maryland Coal and Reality are the owners of the site, but have changed their name to Allegany Coal and Land Company.⁹

The landfill demonstration project was partially financed by the U.S. Public Health Service to the Maryland Department of Health in order to show the effectiveness of using abandoned strip mines as landfills.⁵ The landfill operated from 1967 to late 1971. Because of the experimental nature of the landfill, many precautions and monitoring systems were in place throughout the operation of the landfill. These precautions included: 1) laying a three foot bed of compacted earth (from spoil piles) at the base of the landfill to slow infiltration of leachate into groundwater 2) installation of thirteen monitoring wells (three on the waste pile and ten just to the west) to constantly evaluate groundwater levels and quality. 3) a boron tracer substance was deposited with the waste in the landfill to help trace the origin of any

contamination back to the site.

The following companies disposed of waste at the Hoffman facility: Allegany County, Hercules Corp., Celanese Corp., Kelly Springfield Tire and PPS Industries, all centered in Cumberland. The waste disposed of included municipal waste, garbage, refuse, and sewage sludge. On average, 235 tons/day was deposited into the fill. From 1967 to 1971 it is estimated that approximately 225,000 tons of refuse was deposited at the Hoffman facility.

2.2 Permits and Regulatory Actions

The Landfill was operated by Allegany County and the Maryland State Department of Health monitored the site for degradation of surface water and groundwater.

2.3 Remedial Actions

There has been no known remedial action to date.

Table 3A:

Distance of Ring from the Site	Persons served by Private Wells	Persons served by Municipal Wells	Total Population Served
0 - 1/4	0	0	0
1/4-1/2	49	0	49
1/2- 1	88	450	538
1 - 2	260	28	288
2 - 3	336	1435	1771
3 - 4	538	1074	1612
TOTAL	1271	2987	4258

In addition, the following surface water intakes are not located along the 15-mile surface water pathway, but served populations within four miles of the site: Midlothian (104 people), Carlos Shaft (423 people), and Klondike (345 people).

Well-log printouts from Maryland Department of the Environment's Residential Sanitation Department indicated that 49 people are served by private wells within 1/4 to 1/2 mile of the site. During the site visit, the nearest accessible well was located 0.70 miles east of the site and was drilled to a total depth of 372 feet. The nearest permanent residents are located in an apartment complex and a nursing home which either border the landfill or are on the landfill. Both of these facilities obtain their water from the Frostburg Municipal System.

There are no surface water intakes located along the 15-mile surface water pathway. In addition, there are no designated wellhead protection areas within the vicinity of the site.

3.2 Surface Water

The site is in the Georges Creek Valley, a seven mile wide, northeast trending valley between the high ridges of Big Savage Mt. to the northwest and Dans Mt. to the southeast. The valley itself is very hilly, with elevations ranging from 1300 feet to 2240 feet (the site is at 2050 feet). The ridges of Big Savage Mt. and Dans Mt. are at 2900 feet and 2800 feet, respectively. The site is on the eastern side of a small hill which slopes 10-15 degrees down to the east and southeast.

The former landfill is located on the crest of a divide between the northern and southern branches of Braddock Run. A pond is located 50 feet southeast of the site. Surface water runoff from the landfill follows the topography and flows east. The surface water runoff enters into Braddock Run just south of Clarysville approximately 1/2 mile southeast of the landfill. This point constitutes the probable point of entry (ppe) for runoff from the site (Figure 6).

Braddock Run is estimated to flow at 10 - 100 cubic feet per second (cfs). It flows east for approximately 8 miles from the ppe, and during this time it is joined by several small tributaries until it converges with Wills Creek. Wills Creek flows south for 2.5 miles at approximately 324 cfs until it converges with the C&O Canal, a national historic site and sensitive environment. The C & O Canal, a national historic site, makes up about 1.5 miles of the 15 mile surface water pathway. The C & O Canal feeds into the North Branch of the Potomac River. The Potomac River makes up the last 3 miles of the 15 mile surface water pathway. A downstream gaging station estimated the average flow rate of the Potomac to be 1256 cfs. There are no downstream surface water intakes within 15 miles of the site.

The southern branch of Braddock Run is not designated as a wetland. ¹⁴ East of Clarysville there are several small areas of forested palustrine wetlands until the convergence with Wills Creek. Each of these wetland areas are approximately 1/2 mile in length. There is also a small area of forested palustrine wetland within the C & O Canal. A final area of wetland exists on the north branch of the Potomac River. Each of these wetland areas also measures 1/2 mile in length. The total wetland frontages associated with this surface water pathway are summarized below:

Table 3B:

Prom	To	Distance	flow rate (cfs)	Wetland frontage
ppe (Braddock Run)	Wills Creek	8 miles	10-100	2 miles
Wills Creek	C&O Canal	2.5 miles	324 ¹⁰	0 miles
C & O Canal	North Branch of Potomac River	1.5 miles	100-1000	0.5 miles
Potomac River	15-mile point	3 miles	1256 ¹⁰	0.5 miles

The Potomac River stretch below the landfill is used for recreational fishing. Braddock Run was barren of fish for many years due to acid mine drainage from the Hoffman Drainage Tunnel, but brook trout have recently returned to the stream. Photographs taken during this site inspection indicate that the water at the confluence of the Hoffman Drainage Tunnel and Braddock Run is too shallow to support a fishery (see photographs, section 8.0).

Several parks and wildlife areas are located within four miles of the site, including the Savage River State Forest, Dans Mt. State Park, and the Dans Mt. Wildlife Management Area.

3.3 Soils

The soils at the site have been disrupted by strip mining and covering of the waste on the landfill. Prior to the strip mining operations at the site, the soil consisted of the Gilpin, Westmoreland, and Opequon Series. These are mostly shallow soils. The Opequon and

Gilpin Series soils often have boulders at the surface. All of these soil types have water tables greater than 4 feet, and have infiltration rates of 0.6 to 2.0 inches per hour.¹⁸

3.4 Geology

The landfill is located in the Appalachian Plateau physiographic province. This plateau extends from Alabama to Pennsylvania. It is bordered on the east by the Valley and Ridge physiographic province and on the west it grades into the flat lying rocks of the stable craton. Porosity and permeability of the rocks of the Appalachian Plateau depend on the frequency, density and interconnection of fractures. In general, the most productive aquifers are in sandstone, although yield may vary throughout the formation depending on degree and type of fracturing and cementation. Except on a local level, limestone is not an important source of groundwater in this Province, because it is thinly bedded in most places and often contains shale.¹⁹

Outcropping at the site is from Permian age undifferentiated rocks and the Monongahela Formation (see Figure 5). The Permian age rocks are present only as a cap on a hill adjacent to the site. The Monongahela Formation consists of interbedded sandstone, siltstone, shale, and several important coal beds, 20 including the Pittsburgh Coal, which is the thickest coal bed in the northern Appalachian coal fields. 21 The formation is from 240 to 270 feet thick in this area. 20

The Conemaugh Formation outcrops about 0.5 mile east of the site (see Figure 5). It consists of interbedded sandstone, siltstone and shale with minor limestone and coal beds. Thickness of the formation ranges from 835 to 925 feet.

The site is located on the southeast flank of the broad Georges Creek Syncline. The Syncline plunges to the southwest, with rocks striking northeast and dipping 5 degrees to the northwest.²¹ No faults are indicated in the area of the site. No karst terrain is present within a 4 mile radius of the site, even though thin limestone beds are known to be present within the Conemaugh and Monongahela Formations.

3.5 Groundwater

The landfill is located in the Georges Creek Basin water province, which is coincident with the topographic Georges Creek Valley. The Monongahela Formation outcrops at the site. It yields groundwater to wells and springs in quantities generally sufficient for domestic and farm use. Because of its thinness and isolated topographic position in some places, it is not as good an aquifer as the underlying Conemaugh Formation. Depths of drilled wells in this formation range from 60 to 85 feet. The yield is from 2 to 20 gallons per minute (gpm). Because of mining and tunneling, the Monongahela Formation may be totally drained in some places.

Groundwater from wells and springs in the Conemaugh Formation, which underlies the site, is used for public water supply in various towns in Allegany County. In the target area, the towns of Clarysville and Vale Summit use springs for municipal water supply. Most of the wells in the Georges Creek Basin Water province are in the Conemaugh Formation. Depths of wells present in this formation ranges from 22 to 1354 feet. Yields range from 1 to 170 gpm.

At the site, groundwater exists at a depth of 5 feet. Wells within 1 mile average a flow of 8.5 gpm and range in depth from 50-575 feet and average 164 feet deep. It is believed that surface water runoff and shallow groundwater flows towards the east, while the deeper groundwater flows west towards George's Creek Basin. The site is near the outlet of the Hoffman Drainage Tunnel, which may have affected groundwater location or movement at the site.

Ten observation well were drilled on-site in May of 1970. The wells range in depth from 51-86 feet and were drilled to the top of the Tyson coal seam. Wells number 1-8 were drilled near the landfill pit, and wells 9 and 10 were drilled to observe groundwater levels and indicate any movement from the pit (Appendix III).

Springs are common in Allegany County, usually issuing from limestones and dolostones, but also coming from the Conemaugh and Monongahela Formations. Springs in the Conemaugh Formation range in discharge from 1 to 150 gpd.²⁰

3.6 Meteorology

The climate of western Maryland is temperate and humid. Average annual precipitation is 40 inches, and the average lake evaporation is 32 inches. The two-year twenty four-hour rainfall is 2.7 inches.

3.7 Nearby Land Use and Population Distribution

The total population living within four miles of the site is estimated to be 16,837 persons.^{1,13} This population includes the nearby residents plus those attending Frostburg University. According to the topographic maps of the area, approximately 6672 homes are located within 4 miles of the site. This distribution is listed below.

Table 3C:

Distance of Ring from the Site (miles)	Residential Population in the Ring
0 - 1/4	290
1/4 - 1/2	68
1/2 - 1	1112
1 - 2	2172

2 - 3	1519
3 - 4	1511
Total Population:	6672

This estimate is based on topographic mapping of the site area.¹ The number of dwellings within each distance ring were counted, and these values were multiplied by the average of 2.3 persons per dwelling for Allegany County. However, these population values were based upon the latest topographic maps available, which were dated 1971 - 1979. In order to account for the increase in the population of Allegany since that time, the population values were then multiplied by the ratio of the population of Allegany County in the 1990 census to that of the 1970 census.¹³ In addition, the topographic maps did not include the nursing home or apartment building which were built within 200 feet of the site in the last decade. A phone call to the managers of each of these buildings produced a rough estimate of the number of residents within 1/4 mile of the site.

The topographic map does not delineate houses in urban areas. As a result, the 1990 Census data were used which showed that approximately 8075 persons permanently reside in the city of Frostburg. In addition, the Frostburg University houses approximately 4100 individuals. Since Frostburg is a secluded University, it was estimated that approximately half of the students which attend this University were included in the population count for the City of Frostburg. Therefore, our total population is distributed as follows:

Table 3D:

Source	Population Value	Distance ring in which the population is located
Topographic map Count	6672	See above table which outlines distribution for this population
Census data for the City of Frostburg ²⁷	8075	1-2 mile ring: 6056 persons 2-3 mile ring: 2019 persons
Frostburg University students not included in the population for Frostburg	2000	Total University population is located within a 1-2 mile radius of the site
TOTAL	16,847	,

This site is located in a rural and commercial area. The site is empty grassland between the buildings of the industrial park. Six buildings are located within 200 feet of the site. Of these 6 buildings, two house individuals on a relatively permanent basis: the Frostburg Heights apartment which houses 120 persons, the associated nursing home with approximately 170 residents respectively. In addition, the remaining four buildings include two building which make up the Comfort Inn, a small bank, and Rish Equipment.

Two of these six buildings, the hotel and the apartment building, may partially overlie

the fill area, although an engineering study of the site places the fill area 30 - 50 feet to the east. Beall High School is located 0.7 miles northwest of the site, and the topographic map of the area shows at least three other schools in central Frostburg, 1.5 miles northwest.

Within four miles of the site there is a small area (1/4 - 1/2 miles in length) designated as forested Palustrine Wetland. In addition, an intermittent pond is located 50 feet southeast of the site. This pond receives run-off, leachate and/or shallow ground water from the site and is probably used by local small animals.

4.0 Waste Description

The wastes at this site are associated with the landfill operation which took place from 1967 to late 1971. The wastes were disposed in a pit left by an abandoned coal strip mine.⁵

The waste disposed consisted of municipal waste, garbage, refuse and sewage sludge. It was estimated that approximately 225,000 tons of refuse was disposed at this facility between 1967 and 1971 (Figure 7)⁵ During the operational period at the site, the quantity of waste continually increased. In 1967 it was estimated that between 20-60 tons/day was deposited and in 1971 this quantity increased to between 200-275 tons/day (Figure 7). The rules of operation at the Hoffman facility indicated that no hazardous waste could be accepted (Appendix I).

The following companies are known to have disposed of waste at the Hoffman facility: Allegany County, Hercules Corp., Celanese Corp., Kelly Springfield Tire and PPS Industries, all centered in Cumberland.⁶

5.0 Site Sampling

5.1 Previous Studies

Chemical analysis was completed by the Maryland Department of Health prior to the opening of the facility and continued through 1971. Samples were collected from Braddock Run and the on-site pond. These samples were analyzed for the following parameters: iron, chloride, nitrate, total solids, hardness, and pH. The results gave no evidence of degradation of Braddock Run as a result of leachate from the landfill (see Table 5A below). The authors noted that dilution as possible contaminants enter Braddock Run may affect the results and therefore make degradation of Braddock Run as a result of the landfill harder to detect.

The results from the on-site pond indicated that the iron content of the water had increased, chlorides had increased approximately 30 times, and total solids had also increased (see Table 5B below).¹⁶

Table 5A: Results from Maryland Department of Health's sampling of Braddock Run.¹⁶

Constituent or property	Sample collected 1-15-68 (mg/l except pH)	Sample collected \$-18-70 (mg/l except pH)	Range in values during period covered (mg/l except pH)	Number of analyses in range
Iron	9.0	9.0	0.0 - 12	11
Chloride	2.5	1.5	2.5 - 208	11
Nitrate	1.9	0.1	0.04 - 1.9	. 11
Total Solids	754	1040	684 - 1040	10
Hardness as CaCO,	438	569	399 - 569	11
рН	6.1	6.8	3.7 - 6.8	11 %

Table 5B: Results from Maryland Department of Health's sampling of water from on-site pond.¹⁶

Constituent or property	Sample collected 3-16-67 (mg/l except pH)	Sample collected 4-27-70 (mg/l except pH)	Range in values during period covered (mg/l except pH)	Number of analyses in range
Iron -	0.3	100	0.2 - 2250	10
Chloride	6.0	192	0.5 - 231	9
Nitrate	0.1	3.0	0.1 - 3.0	9
Total Solids	248	3316	208 - 7058	9
Hardness as CaCO ₃	106		106 - 2310	9
pН	7.1	5.3	3.7 - 7.9	9

Groundwater samples were collected by the Water Resources Administration during the five years that the Hoffman Site was an active facility. The results of chemical analysis showed no evidence of contaminants moving from the landfill and into the groundwater observation wells. The report noted that some samples revealed elevated levels of heavy metals in the groundwater. The report further noted that this occurrence may natural since the coal in the area of the Hoffman landfill is reported to contain high levels of heavy metals. In addition, a boron tracer was placed in the landfill to isolate contaminant specific to the activities at Hoffman. No boron was detected in the groundwater samples.⁵

The groundwater samples were also analyzed for pesticides and herbicides. The results detected some sulfur, but sulfur is again normally in detected in coals of that region.⁵

5.2 MDE/HSWMA Contract Laboratory Sampling

The MDE/HSWMA CERCLA Pre-Remedial Division submitted the sampling plan for this site to the USEPA Region III on December 30, 1991. The site was sampled on June 23, 1992.

Samples were collected from groundwater, surface water, and soils from both on-site and off-site locations. These samples were collected and submitted in accordance with the USEPA Contract Laboratory Program (CLP) Routine Analytic Services (RAS), under case number 18347. The samples were analyzed for a full scan of all priority pollutants.

The samples were collected in five sample matrices: organic aqueous, organic soil (soil, sediment and leachate), inorganic aqueous, inorganic solid, and dissolved metals. Each matrix included the collection of a field duplicate sample and an additional matrix spike volume. In addition, each aqueous matrix was provided with a field blank sample, which consisted of deionized water poured into the sample containers in the field during the sampling event, and then submitted for analysis with the appropriate aqueous matrix. The sample collection log follows in Table 5C.

Table 5C: Sample Log

Sample Designation	QTR#	TTR#	Sample Location	Туре	Remarks
GW-1	CKY-15	МСЈҮ-08		Aqueous	
GW-2	CKY-16	мсју-09		Aqueous	
GW-3	CKY-17	MCJY-10		Aqueous	
GW-4	CKY-18	MCJY-11		Aqueous	Spike
GW-5	СКҮ-19	МСЈҮ-12		Aqueous	Duplicate

Sample Designation	QTR#	itr#	Sample Location	Туре	Remarka
GW-6	СКҮ-20	мсгү-13	On-Site Monitoring Well - Adjacent to the Comfort Inn	Aqueous	
SW-1	CKY-22	мсју-15	Down stream from confluence of Hoffman drainage.	Aqueous	
SW-2	CKY-23	МСЈҮ-16	Down stream from confluence of Hoffman drainage.	Aqueous	
SW-3	CKY-24	MCJY-17	On site.	Aqueous	
SW-4	CKY-25	МСЈҮ-18	South of Braddock Run.	Aqueous	Background
LT-1	CKY-26	МСЈҮ-19	On-site southeast of Comfort Inn.	Soil	Wetland area
SED-1	CKY-28	мсју-21	Downstream from confluence of Hoffman drainage.	Sediment	
SED-2	СКҮ-29	мсју-22	Downstream from confluence of Hoffman drainage.	Sediment	
SED-3	CKY-30	мслу-23	On-site	Sediment	
SED-4	CKY-31	мсју-24	South of Braddock Run.	. Sediment	Background
S-1	CKY-32	мсју-25	North west of the site.	Soil	Background
S-2	CKY-33	мсју-26	20 feet southeast of concrete slab.	Soil	Background
S-3	CKY-34	мсју-27	Approx. 150 feet east of Comfort Inn banquet room.	Soil	Partially decomposed waste within top 2 inches.
S-4	CKY-35	мсју-28	25 feet from Route 36.	Soil	Clay soil - ditch with wildflowers and grass.
S-5	CKY-36	МСЈҮ-29	22 feet east of apartments.	Soil	2 inch sample - low area
S-6	CKY-37	мслу-30	200 feet south west of Comfort Inn.	Soil	
. S -7	CKY-38	MCJY-31	Duplicate of S-3.	Soil	Duplicate of S-3

Sample collection was conducted 8:00 am to 4:00 on June 23, 1992. The samples were packaged on-site and transported to Federal Express that afternoon for shipment. The organic matrices were shipped to:

Compuchem Laboratories 3308 Chapel Hill/Nelson Highway Research Triangle Park, NC 27709

The inorganic matrices were shipped to:

ETS Analytical Services 2160 Industrial Drive

Salem, Va 24153

The discussion of the organic data review and the data summary forms are included as Attachment I. The discussion of the inorganic data review and the data summary forms are included as Attachment II. The detailed organic data package is presented in Attachment III of Volume II of this report. The detailed inorganic package is Attachment IV of Volume II of this report. The detailed inorganic data package is Attachment IV of Volume II.

5.2.1 Sampling Results

The trip blanks, which accompanied the samples from the time of collection until delivery to the organic laboratory, were analyzed to detect contamination introduced in the field. In addition, lab blanks were also collected in order to isolate contamination introduced during the lab analysis. The following organic contaminants were detected in the water blanks and the highest concentration in which they were detected is listed below: bis(2-Ethylhexyl)phthalate 2 μ g/L, methylene chloride 22 μ g/L, and acetone 15 μ g/L.

Inorganic analysis of the field blank sample also detected contamination. The unfiltered blank sample revealed calcium 9.7 μ g/L, iron 5.6 μ g/L, and zinc 4.0 μ g/L. The filtered metals blank contained barium 1.5 μ g/L, calcium 319 μ g/L, iron 12.1 μ g/L, manganesium 47.6 μ g/L, manganese 4.3 μ g/L, sodium 181 μ g/L, and zinc 29.3 μ g/L.

5.2.2 Groundwater Sampling Results

Groundwater samples were collected from the Clarysville system which is a spring that serves approximately 28 people (GW-1), 1 residential wells (GW-2/GW-5), a golf course well (GW-3), and an on-site monitoring well (GW-6). In addition, a background residential well samples, GW-4, was also collected (Figure 8 & 9).

GW-2/GW-5 was collected from a well that, according to the well drillers, was deepened to 372 feet just prior to sampling.¹³ Consequently, the owners had been treating the well with chlorine. GW-3 was collected from a well at the Maple Hurst County Club. The water from this well is only used to fill the ponds at the golf course. This well is approximately 300 feet deep. The background well, GW-4 was collected from a depth of 175 feet. The owners of this well said that they had a water softener.

In addition, the groundwater analysis also included the collection of one monitoring well sample on-site. This monitoring well, which was believed to be monitoring well 3, was installed with one-half inch opening per foot of pipe.⁵ As a result, surface water is able to flow into this monitoring well. Because of this possible surface water infiltration, the results from this sample may not accurately represent the condition of the groundwater in the

aquifer sampled. On the day of sampling, this well was found to be 37.85 feet to water, and 70.5 feet to the bottom of the well. The monitoring well was purged of three times the volume of the water standing in the well casing. The purging was accomplished using a truck-mounted pump. Samples were collected from the monitoring well using plastic hand bailers.

Organic analysis detected vinyl chloride at 2 ppb in the on-site monitoring well sample. No organic contamination at reportable quantity levels was detected in the residential well samples. A reportable quantity is defined as a concentration which is greater than three times background and that is greater than 10 times the blank sample for common laboratory contaminants and greater than 5 times the blank for other contaminants.

Inorganic compounds were detected in all of the residential well samples. Only GW-2/GW-5 a residential well, and GW-3 the golf course well, detected concentrations exceeding three times background. The table below outlines these samples of concern.

Table 5D:

Contaminant	GW-4 (Background) ug/L	GW-2/GW-5 (ug/L)	GW-3 (ug/L)
arsenic		/	7.0
barium	28.7	⊳ 137/133	206
beryllium		[0.39B]/[0.29B]	[2.7]
cobalt		- /-	13.2
copper	·50	*/*	271
iron	1530	*/*	172000
lead	7.5	*/*	35.3
manganese	31.6	.*/*	577
zinc	25.4	*/*	561

Legend

GW-3, the well with the highest concentrations of contaminants, had not been used in over a year. The field notes from the sampler who collected GW-3 indicated that when the water was turned on it had a "rust color." The water was run for approximately 10-20 minutes but still had a slight rust color to it when the sample was collected (see photographs). Therefore, this inorganic contamination was not considered attributable to the site and was not used in the overall evaluation of the facility.

See Table 1C for the inorganic contaminants detected in the monitoring well sample.

^{-:} not detected

^{*:} not greater than three times background

B: not detected substantially above the level reported in lab or field blank

^{[]:} analyte. As values approach the IDL the quanitation may not be accurate

5.2.3 Surface Water Sampling Results

Four surface water/sediment samples were collected from on-site and off-site locations. SW-1/Sed-1 was taken downstream from the Hoffman Drainage tunnel. The Hoffman Drainage Tunnel is a two mile long shaft which drains the subsurface mines below the Hoffman, Cabin Run, and Vale Summit Landfills.⁶ At this point, the water was shallow and flowing well. No visible signs of contamination were noticed (see photographs). SW-2/Sed-2 was taken from Braddock Run east of Clarysville. At this location, the water was flowing fast and the water and the sediment were heavily stained (see photographs). No background sample was collected upstream of the SW-2/Sed-2. SW-3/Sed-3 was collected from a pond on-site. SW-4/Sed-4 was collected south of Braddock run as a background sample (Figure 10).

No organic contamination was detected in the surface water samples. All of the surface water samples contained inorganic contamination exceeding three times background concentrations. SW-1 contained lead at 1.5 μ g/l, and iron at (740 μ g/L). The contaminants of concern for SW-2 are: cobalt (37.8 μ g/L), iron (5800 μ g/L), manganese (3020 μ g/L), magnesium (44600 μ g/L) and nickel (78.7 μ g/L). The SW-3 sample detected iron (3140 μ g/L), manganese (429 μ g/L) and potassium (4300 μ g/L).

Organic contamination was detected in the sediment samples. Sed-2, contained several PAHs at low concentrations; phenanthrene (130ug/kg), pyrene (85ug/kg), benzo[a]anthracene (110ug/kg), chrysene (120ug/kg), benzo[b]fluoranthene (250ug/kg), benzo[k]fluoranthene (250ug/kg), benzo[a]pyrene (120ug/kg), 4-methylnapthalene 92 μ g/kg, and indeno-(1,2,3-cd)pyrene (64ug/kg). Sed-3 contained phenanthrene (56ug/kg) and 4-methylphenol (62ug/kg).

Sed-4 contained 4,4-DDE (0.38ug/kg).

Toluene was detected at 1 μ g/kg in Sed-1.

Inorganic contaminants were detected at greater than three times background at the Sed-2 sample location. The following of concern were detected: chromium 332 mg/kg and cobalt 180 mg/kg.

5.2.4 Soil Sampling Results

Seven soil samples and one leachate sample were collected from on-site. S-1 served as the background sample and was collected northwest of the site. S-2 was taken southeast of the site. S-3 and S-7 were duplicates and were taken approximately 150 feet east of the Comfort Inn banquet room. S-4 was taken 25 feet from State Highway 36. S-5 was taken 200 feet east of the apartments. S-6 was taken within 200 feet of the Comfort Inn. The leachate sample was taken in a small wetland area on the site (Figure 11).

The leachate sample did not contain any contaminants whose concentrations exceeded three times background. Fluoranthene and Endosulfan I were detected in Soil 3/7 sampling locations. Various other organics at very low concentrations were detected in Soil-4, Soil-5, and Soil-6. See Table 5 for a complete list of the contaminants detected. Partially decomposed waste (cans, plastic, glass) was detected within the top two inches of the soil in S-3/S-7.

Inorganic contamination revealed very little contamination which exceeded three times background. S-3/S-7 contained mercury (0.19mg/kg and 0.16mg/kg respectively) and cyanide (0.45mg/kg and 0.71mg/kg respectively). S-4 contained cyanide (0.23mg/kg). S-5 and S-6 did not contain any inorganic contamination which exceeded three times background.

6.0 Toxicological Evaluation

The Hoffman Landfill is a former coal strip mine which was converted to a sanitary landfill in 1967. The site is located on the southeast edge of the city of Frostburg, in Allegany County, Maryland, and covers 22 acres adjacent to the Frostburg Industrial Park. Six buildings within 200 feet of the site include an apartment building (30 feet from the site), a nursing home, a bank and a hotel. Beall High School is located 0.7 miles from the site.

Samples were taken from sediment, surface water, surface soil and groundwater on and around the site. Few organic contaminants were detected in any of these media, and only vinyl chloride which was found in the on-site monitoring well exceeded EPA benchmark concentrations²². Lead was also detected in the groundwater on-site at concentrations which exceed the MCL. Of the inorganic compounds detected, arsenic and beryllium were detected in soil and sediment at levels exceeding EPA benchmark concentrations for surface soil.

Surface water and sediment samples were taken from an intermittent stream and pond on site. When flowing, the stream is a tributary of Braddock Run which flows one mile east of site and joins Wills Creek just north of Cumberland, and then flows south to the Potomac River.

Exposure pathways of concern at this site include incidental ingestion of and dermal contact with surface soil. It is not known at this time if any of the 450 residential wells within four miles of the site are hydrogeologically downgradient of the site.

Worst case scenarios were used in the following quantitative evaluations. While these exposure scenarios are unlikely, they were used in order to protect potentially exposed populations:

- 1. For surface soil and exposed sediment, the residential exposure scenario assumes that a 70 kg adult ingests 100 mg of soil per day, 350 days per year, for 30 years, and a 15 kg child ingest 200 mg of soil per day for six years. The trespasser scenarios are the same, but assume an exposure frequency of 150 days per year.
- 2. For groundwater, the residential exposure scenario assumes that a 70 kg adult ingests two liters of water per day, 350 days per year, for 30 years, and a 15 kg child ingests one liter per day, 350 days per year, for six years.

Support Data

Organics:

Vinyl Chloride

Vinyl chloride was detected in the on-site monitoring well at a concentration of 2 ppb. This exceeds the EPA benchmark for tap water of $0.025 \mu g/1.^{22}$

EPA has classified vinyl chloride as a Group A known human carcinogen, with a potency factor of 1.9 mg/kg/day^{-1, 25}. Assuming the adult residential drinking water scenario, the daily intake would be 2.3E-5 mg/kg/day. The resulting cancer risk would be 4.4E-5. This risk exceeds EPA's point-of-departure for carcinogenic risks (1.0E-06), but falls within the range that may be considered acceptable by EPA (1.0E-06 to 1.0E-04).

Inorganics:

Arsenic

Arsenic is a naturally occurring element in the earth's crust. Pure arsenic is a gray-colored metal, but this form is not common in the environment. Rather, arsenic is usually found combined with one or more other elements such as oxygen, carbon, chlorine, and sulfur, which determine its form as inorganic or organic. Arsenic combined with inorganic elements is referred to as inorganic arsenic, whereas arsenic combined with carbon and hydrogen is referred to as organic arsenic. It is important to maintain a distinction between inorganic and organic arsenic, since the organic forms are usually less toxic than the inorganic forms²⁴. Typical concentrations for arsenic in the Eastern United States range from less than 0.1 ppm to 73 ppm.²⁶ EPA has categorized arsenic as a Group A carcinogen²⁵

Data gathered at the Hoffman Landfill site do not give arsenic concentrations by specific form. Several soil and sediment samples contained arsenic levels in excess of the benchmark for arsenic as a carcinogen. Arsenic levels detected in surface soil were evaluated to determine the potential risk for trespassers incidentally ingesting soil.

Arsenic is not readily absorbed through the skin, and incidental dermal contact is not likely to cause irritation. Assuming a worst-case residential scenario (described above) in which all available arsenic is in the most toxic form, the chronic daily intake of the maximum arsenic level in off-site sediment (10.6 mg/kg) would be 1.2E-05 mg/kg/day. Based on a potency factor of 1.75 mg/kg/day¹, this dose poses a carcinogenic risk of 2.0E-05. This risk exceeds EPA's point-of-departure for carcinogenic risks (1.0E-06), but falls within the range that may be considered acceptable by EPA (1.0E-06 to 1.0E-04). This dose is also below the acceptable daily intake (or Reference dose) that protects for noncarcinogenic effects. Risk from exposure to arsenic in surface soil also exceeds EPA's

point-of-departure for carcinogenic risks (1.0E-06), but falls within the range that may be considered acceptable by EPA (1.0E-06 to 1.0E-04) since the maximum concentration detected in soil, 7.9 mg/kg in the background sample, is less than in sediment.

Beryllium

Like arsenic, beryllium was detected at elevated concentrations in several soil and sediment samples. Typical beryllium concentrations in the Eastern United States range from less than 1 ppm to 7 ppm.²⁶ The highest concentration in which beryllium was detected was 1.7 mg/kg in off-site sediment.

Beryllium is classified by USEPA as a B2 carcinogen with an oral potency factor of 4.3 mg/kg/day⁻¹²⁵. Assuming a worst-case residential scenario for incidental ingestion of onsite sediment, the chronic daily intake of beryllium would be 1.8E-06 mg/kg/day. This dose would result in a carcinogenic risk of 7.7E-05. This risk exceeds EPA's point-of-departure for carcinogenic risks (1.0E-06), but falls within the range that may be considered acceptable by EPA (1.0E-06 to 1.0E-04). Risk from exposure to beryllium in surface soil is also falls within the range considered acceptable as the maximum concentration in soil is less than in sediment.

In addition, beryllium was also detected in the residential well sample GW-2/GW-5 at concentrations of 0.39 μ g/l and 0.29 μ g/l respectively. These concentrations exceed the health based concentration of 0.02 μ g/L, but do not exceed the MCL of 1 μ g/l.

Lead

Elevated lead levels were detected in several groundwater samples from the Hoffman site. Because no threshold dose for lead has been established that does not pose a risk of adverse neurological effects, EPA has withdrawn the original RfD for lead. The existing Maximum Contaminant Level (MCL), 0.005 mg/l, for lead is based on best available control technology. Because lead levels detected at the Hoffman site exceed the MCL, ingesting this water poses a risk of neurotoxicity. It should be noted that water from these wells are not currently used for drinking.

7.0 References

- 1. USGS, 7.5 Minute Topographic Map, Frostburg, MD Quadrangle, 1949, photorevised 1981.
- 2. USGS, 7.5 Minute Topographic Map, Lonaconing, MD Quadrangle, 1950, photorevised 1981.
- 3. USGS, 7.5 Minute Topographic Map, Cumberland, MD Quadrangle, 1949, photorevised 1981.
- 4. USGS, 7.5 Minute Topographic Map, Cresaptown, MD Quadrangle, 1949, photorevised 1974.
- 5. MD. Department of Health and Mental Hygiene. Use of Abandoned Strip Mines for Solid Waste Disposal in Maryland. June, 1973.
- 6. Ecology and Environment, 1981, Site Field Trip Reports included in MDE/CERCLA files.
- 7. U.S. Weather Bureau Technical Paper 29, 1958.
- 8. MDE/WMA Residential Sanitation Program, 1992.
- 9. Arthur, Gerald, Allegany County of Public Works, personal communication, August 1992.
- 10. Carpenter, David H. Characteristics of Stream Flow in Maryland. 1983.
- 11. U.S. Department of the Interior (USDI), Fish and Wildlife Services, 1977, 1981 National Wetlands Inventory. Frostburg, Cumberland, Cresaptown, Lonaconing, Evitts Creek, and Patterson Creek Quadrangles.
- 12. Maryland Office of Planning, 1991.
- 13. 'Leo Fords.' personal communication, September, 1992.
- 14. Davis, Bob. Department of Natural Resources, Freshwater Fisheries, personal communication, September, 1992.
- 15. Vokes, H.E., and Edwards, J., 1974 (revised), Geography and Geology of Maryland: Maryland Geological Survey Bull. 19, 105p.
- 16. Otten, E.G., 1972. Solid Waste Disposal in the Geohydrologic Environment of Maryland: Maryland Geologic Survey Report of Investigations No. 18, p. 31-33.

- 17. Vokes, H.E., and Edwards, J., 1974 (revised), Geography and Geology of Maryland: Maryland Geological Survey Bull. 19, 98p.
- 18. U.S. Department of Agriculture, Soil Conservation Service. Soil Survey of Allegany County, 1977.
- 19. MDNR, The Quantity and Natural Quality of Groundwater in Maryland, 1987.
- 20. Maryland Department of Geology, Mines, and Water Resources. Geological Map of Allegany County, 1956.
- 21. MD. Geological Survey, Geography and Geology of Maryland, 1957, revised 1974.
- 22. United States Environmental Protection Agency, 1992. Region III Risk-based Concentration Table, Second Quarter, 1992 (version 6.1).
- 23. United States Environmental Protection Agency, 1986. Quality Criteria for Water. EPA 440/5-86-001.
- 24. Agency for Toxic Substances and Disease Registry (ATSDR), October, 1991. Toxicological Profile for Arsenic, Draft for Public Comment.
- 25. United States Environmental Protection Agency, 1992. Integrated Risk Information System (IRIS).
- 26. Shacklette, Hansford T., Josephine G. Boerngen., (1984) Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. United States Government Printing Office. Washington.
- 27. 1990 Census of Population and Housing Summary Population and Housing Characteristics Maryland. U.S. Department of Commerce, Bureau of the Census. 1990.
- 28. MDE/Water Management Administration (WMA), 1992.

8.0 Photographs

Sample being collected from the Clarysville System. This sample was labeled GW-1.

Sample taken from the golf course (GW-3). This sample was collected from the white pipe. Note that the water is stained.

Sample Location for Surface Water 1 and Sediment-1. (Red)

Location of Surface Water-2 and Sediment-2.

Sample Location for Surface Water-4 and Sediment-4.

9.0 Tables

.

£

Table 1A: Inorganic Results Concentrations are recorded as $\mu g/L$. Groundwater Samples. from

Compound	GW-4 (background)	GW+1	GW+2/GW+5	GH-3
Aluminum	[112]	••	*/*	*
Arsenic		••	/	[7.0]
Barium	[28.7]	*	[137] / [133]	206
Beryllium			[0.398]/[0.298]	[2.7]
Calcium	139000	*	*/*	*
Chromium	[2.2]	••		*
Cobalt	••			[13.2]
Copper	50	••	*/*	271
Iron	1530	*	*/*	172000
Lead	7.5	••	*/*	35.3
Magnesium	22100	*	*/*	*
Manganese	31.6	*	*/*	577
Nickel	••	••	••	[13.4]
Potassium	[1440]	*	*/*	*
Sodium	[1640]	*	*/*	131,00
Zinc	25.4	* *	*/*	561

Legend *

Detected, but not greater than three times background not detected As value approaches the IDL the quantitation may not be accurate []

Not detected substantially above the level reported in the field or lab blank

Table 1B: Organic results from groundwater samples. Concentrations are recorded as $\mu g/L$

Compound	GW-4 (background)	GW-1	GW-2/GW-5	GW-3
chloroform .			4 J/4 J	
lindane	.0039 J			

Legend blank space J

not detected estimated value

Table 1C: Results from the onsite monitoring well sample. The unfiltered sample is listed as 'GW-6,' the filtered sample as Dissolved Metals GW-6. In addition, a duplicate sample of the filtered sample was collected and the results are recorded under 'DUP.' All concentrations are recorded as $\mu g/L$.

Compounds	GW+4 (background)	GW-6	Dissolved Metals GW-6/DUP
Aluminum	[112]	*	/*
Arsenic		[1.4]	/
Barium	[28.7]	238	222/222
Beryllium			/
Cadmium			/
Calcium	139000	*	*/*
Chromium	[2.2]		/
Cobalt		[1.9]	/[3.2]
Copper	50	*	/
Iron	1530	9300	8170J/8150J
Lead	7.5	*	/
Magnesium	22100	*	*/*
Manganese	31.6	490	484J/476J
Mercury			/
Nickel			/
Potassium	[1440]	*	*/*
Selenium			/
Sodium	[1640]	*	*/*
Vanadium			/
Zinc	25.4	*	*/*
Cyanide		Q	Q/Q

Legend *

Detected, Not greater than three times background

[] As value approaches the IDL the quantitation may not be accurate

Q No analytical result

J Reported value may not be accurate or precise

-- not detected

Table 1D: Organic contamination detected in the on-site monitoring well samples. Concentations are recorded as $\mu g/l$.

Compound	GW-6		
vinyl chloride	2		
lindane	.0099 J		

Legend

J Estimated Value

Table 2: Inorganic Analysis of Surface Water Samples. Concentrations are recorded as $\mu g/L$.

Compounds	Leachate-1	S¥+4 (Background)	su·1	SW+2	S¥-3
Aluminum	3530	. 378	*	*	
Arsenic	[2.7]		••	[1.1]	
Barium	*	[49.1]	*	*	*
Beryllium			• •	0.24 B	
Calcium	*	21800	*	117000	*
Chromium	[5.3]			••	
Cobalt	*	[2.7]	*	[37.8]	
Copper	[15.2]		[3.9]		••
Iron	12000	195	740	5800	3140
Lead	10.7	[0.40]	1.5		
Magnesium	*	5950	*	44600	[4650]
Manganese	327	77.9	*	3020	429
Nickel	*	[11.9]	*	78.7	
Potassium	*	[1090]	*	*	[4300]
Sodium	*	5040	*	*	*
Zinc	*	25.5 В	*	/ *	В

Detected, but not greater than three times background

[] Analyte present. As values approach the IDL the quantitation may not be accurate

-- Not Detected

B Not detected substantially above the level reported in lab or field blanks

Reported Value May Not be Accurate or Precise

In addition, Endosulfan Sulfate at 0.0082 J μ g/l and Methoxychlor at 0.019 B μ g/l were detected in the leachate sample.

Table 3: Organic Analysis of Sediment Data. Concentrations are recorded as $\mu g/kg$.

Compound	Sed-4 (Background)	Sed+1	Sed+2	Sed-3
Toluene		1		
Fluoranthene	•	,	120J	·
Phenanthrene			130J	56 J
Pyrene			85J	
Benzo [a] Anthracene	·		110J	
Chrysene			120J	
Benzo[b] Fluoranthene			250 J	
Benzo [k] Fluoranthene			250 J	
Benzo[a]Pyrene			120J	
Indeno-(1,2,3-cd)Pyrene			64J	
4-Methylphenol				62J
4-methylnapthalene			92 J	
4,4-DDE	0.38			

J blank space Estimated Value Not detected

Table 4: Inorganic Results for Sediment Samples. Values are recorded as mg/kg.

Compound	Sed+4 (Background)	Sedr1	Sed+2	Sed+3
Aluminum	4260	*	*	***
Arsenic	3.6	*	*	₹ . × . 5 2 # . × .
Barium	86.5	*	* .	*
Beryllium	1.7	· *	*	. *
Cadmium	[0.55]		••	
Calcium	1290	10000	10400	*
Chromium	12.2	*	332	*
Cobalt	54.1	*	180	: * *
Copper	16.1	, *	*	* ::
Iron	27900	*	*	*
Lead	15.7	*	*	*
Magnesium	[785]	*	*	*
Manganese	1480	*	13500	*
Mercury		. ••	••	;
Nickel	89.1	*	*	*
Potassium	[577]	*	*	
Selenium	[0.34] L	*	1.8	
Sodium .	[44.4]	*	*	. *
Vanadium	[11.7]	*	*	*
Zinc	188 J	*	*	*

- Detected, Concentration does not exceed three times background Analyte present. As values approach the IDL the quantitation may not be accurate Not Detected []

- Analyte present. Reported value may not be accurate or precise
 Analyte present. Reported value may be biased low. Actual value is expected to be higher

Table 5: as μ g/kg Organic Results from Soil Samples. Values are recorded

Compound	Soil-1 (Backgd)	Soil-2	Soil-3/Soil-7	Soil-4	Soil-5	Soil-6
Fluoranthene			39J/61J			
Phenanthrene			/	47J		·
Pyrene	,		/55J		<u> </u>	
Benzo[b] Fluoranthene	,		/61J			
Benzo[k] Fluoranthene			/61J			
Endosulfan I			0.40J/0.34J		`_	
alpha-BHC			/	0.100J		
gamma-Chlordane		·	,/	0.41J		,
4,4'-DDE			/		0.97J	
Endrin Ketone			/		,	0.12J

Estimated Value Not detected Not detected

blank space

Table 6: Inorganic Results from Soil Samples. Concentrations are recorded as mg/kg

Compounds	S-1 (Backgd)	s-2	s-3/s-7	\$-4	s-5	S-6
Aluminum	8270	*	*/*	*	*	*
Arsenic	7.9	*	*/*	*	*	*
Barium	142	*	*/*	*	*	*
Beryllium	[1.1]	*	*/*	*	*	*
Cadmium	[0.42]	••	•-/•• : ·	••	••	
Calcium	2640	*	*/*	*	*	*
Chromium	12.0	*	*/*	*	*	*
Cobalt	19.3	*	*/*	*	. *	* 1
Copper	28.7	*	*/*	*	*	**************************************
Iron	33900	*	*/*	*	*	. Zig•(**)
Lead	35.0	*	*/*	*	*	· · · · · · · · · · · · · · · · · · ·
Magnesium	[1030]	*	*/*	*	*	*
Manganese	1170	*	*/*	*	*	*
Mercury	• •		0.19/0.16	••	• •	
Nickel	22.2	*	*/*	*	*	*
Potassium	1240	*	*/*	*	* .	*
Selenium	[0.35] L	••	*/*	••	*	*
Sodium	[119]	*	*/*	* **	*	*
Vanadium	18.3	*	*/*	*	* .	*
Zinc	: 78.0 J	*	*/*	*	*	*
Cyanide			[0.45]/0.71B	[0.23]	•• .	-!-

- Detected, Not greater than three times background
 Analyte present. As values approach the IDL the quantitation may not be accurate []
- Not Detected
- Analyte present. Reported value may be biased low. Actual value is expected to be higher Analyte present. Reported value may not be accurate or precise

Note: S-3 and S-7 are Duplicate Samples

Table 7: as $\mu g/kg$. Pesticide data for sediment samples. Values are recorded

Conteminant	SED-1	SED-2	SED-3	SED-4 (background)
Lindane		0.079 J		
heptachlor	0.17 J	0.35 J	0.48 J	0.25 J
dieldrin		0.072 J		
4,4'-DDE	0.20 J	0.64 J	0.39 J	0.38 J
endrin		0.47 J		
4,4'-DDD		0.15 J		0.51 J
4,4'-DDT	:			0.15 J
endrin ketone	0.18 J	0.31 J		
alpha-chlordane		0.36 J		
gamma-chlordane		0.46 J		0.16 J

Estimated Value Not detected Not detected

blank space

Table 8: μ g/kg. Pesticide data for soil samples. Values are recorded as

Contaminant	S-1 (background)	S:2	S-3/S-7	S-4	S-5	S-6
alpha-BHC		0.25 J		0.100 J		
lindane	0.25 J	0.16 J	0.13 J/nd	0.41 J	0.37 J	0.12 J
heptachlor	0.13 J	0.065 J	/0.094	0.050 J		
aldrin	,	0.65 J	0.58 J/0.37 J			
Heptachlor epoxide		0.18 J	0.30 J/0.26 J	0.10 J		
Endosulfan I		0.13 J	0.40 J/0.34 J	0.30 J		·
dieldrin	0.20 J		/0.33 J		1 1	-
4,4-DDE					0.97 J	
endrin		0.075 J	0.59 J/0.56 J	0.27 J	0.51 J	
endosulfan sulfate		0.096 J				:
4,4'-DDT	0.16 J		/1.3 J		1.2 J	
methoxychlor				9.4 J		
endrin ketone	0.66 J		0.15 J/	0.47	0.17 J	0.12 J.
alpha- chlordane	:		0.55 J/0.48 J	0.39 J		
gamma- chlordane	0.072 J	0.41 J	0.67 J/0.51 J	0.41 J	0.45 J	
endosulfan II			0.31 J/	0.22 J		

Estimated Value Not detected Not detected

blank space

10.0 Figures

Figure 2 - Index Map of western Allegany County, Maryland, showing towns, roads, and location of the Hoffman Landfill.

area is the approximate area of the Hoffman Landfill.

GEOLOGIC MAP

FIGURE 5

P - Permian Undifferentiated

Pm - Monongahela Formation

₽c - Conemaugh Formation

Pap - Alleghany and Pottsville Formations

Undifferentiated

Mmc - Mauch Chunk Shale

Mgb - Greenbriar Formation

Mp - Pocono Formation

Dh - Hampshire Formation

Dj - Jennings Formation

State of Maryland Department of Geology, Mines, and Water Resources. Geologic Map of Alleghany County. 1956.

Tons of refuse (hundreds) Population (thousands)

Location of Residential Well Samples Figure 9

Appendix I
Rules of Operation at Allegany County's Landfill Projects

WELCOME TO ALLEGANY COUNTY LANDFILL NO. 2

The following rules of operation are necessary for the efficient operation of this landfill project. Your cooperation in abiding by these rules is greatly appreciated.

Rules of Operation

- 1) State laws require that all vehicles hauling materials that would be blown and/or fall upon a highway must be properly covered.
- 2) OBEY posted speed limits.
- The Allegany County Landfill Project assumes no responsibility for accidents. Travel at your own risk on all roads leading to the landfill as well as the landfill site itself.
- 4) Cars and station wagons with small amounts of refuse please check with the scale operator.
- 5) NO HOT ASHES or burning material accepted.
- 6) NO FIREARMS or hunting permitted on the landfill property.
- 7) No scavenging or salvage operations permitted.
- 8) No trespassing after operating hours.
- 9) Refuse must be placed at the point designated by landfill personnel.
- 10) Prohibited items:
 - (a) Motor vehicles or large portions thereof
 - (b) Large stumps or tree limbs
 - (c) Explosive materials or hazardous materials

11) Permits are required for non-county residents.

Appendix II Cross Sections of Mine Pit Filling Operation

FIGURE NUMBER 3 CROSS SECTIONS OF MINE PIT FILLING OPERATION

⊘) ORIGINAL (Red)

Appendix III
Geology and Hydrology at the Hoffman Landfill

.

GEOLOGY AND HYDROLOGY OF THE FROSTBURG SANITARY LANDFILL

SITE NUMBER I

ALLEGANY COUNTY, MARYLAND

I. Introduction

Specially designed observation wells were installed at the Frostburg landfill site to aid in sample collection, and to observe, measure, and test a variety of characteristics related to the geology and hydrology of sanitary landfills placed in old strip mines. Two basic well types were installed: one type on the surface of the landfill penetrating all layers of previously compacted and covered trash, and the other adjacent to the landfill in a geologic downdip position penetrating undisturbed strata. The two basic areas for well locations were designed for essentially independent objectives and methods of data collection, but as the research progressed, overlap occurred in the areas of data presentation.

Both types of wells aided in carrying out the following activities:

- 1. The measurement of ground water and/or leachate level fluctuations.
- 2. The measurement of air and water temperatures inside each well.
- 3. The observation of liquid flow patterns by means of tracers.
- 4. The sampling of gases and liquids for laboratory analysis.

Additionally, the wells on the landfill were fitted at the ground surface with moveable concrete collars which allowed for the measurement of the percent of landfill settlement.

II. Well Installation

A. Groundwater Observation Well (Figure No. 14)

1. Drilling

Ten observation wells were drilled on May 14, 1970, (Figure No.5). These wells ranging in depth from 51 feet to 86 feet were drilled to the top of the Tyson coal seam for which the coal was removed in the strip mine. (Figure No.6). Wells 1 through 8 were placed as close to the filled pit as possible and penetrated complete geologic sections; wells 9 and 10 were located to facilitate observations of ground water levels and movement away from the pit. Water was encountered in all ten wells at the time of drilling.

2. Well Construction

- a. The wells were drilled into the coal seam, but not through it.
- b. The holes were cased with four inch diameter perforated PVC (polyvinylchloride) pipe with 10, one-half inch openings per foot of pipe. These perforations permitted free water flow into the wells.
- c. Concrete collars surrounded the casings at ground level to prevent surface water from entering the wells. Removeable plastic caps covered the tops of the casings. For additional protection against vandalism, locked steel covers protected the well caps and concrete collars.
- c. Signs marked the sites of the wells to aid in their location in case they were obscured by high grass or snow.
- e. Bench marks were established on wells 2, 3 and 5 to facilitate in the determination of changing elevations on landfill observation wells A, B and C, owing to landfill settlement.

Appendix IV
Summary and Data Tables from the Water Sampling
Program at the Hoffman Landfill

WATER SAMPLING PROGRAM

* As mentioned previously, a program was conducted during the period 1966 through 1969 to collect water samples from private wells and surface sources to obtain background information and to determine possible changes in the physical and chemical qualities as a result of the Frostburg and Westernport landfill operations. The results of the laboratory examination of these samples showed no significant changes or harmful effects. The findings of these tests are summarized in Table 4.

* In addition, a similar testing program was instituted to monitor the quality of the water in the ten groundwater observation wells at the Frostburg site. The results of the determinations for pH, total residue, volatile residue, chlorides, oxygen demand, total iron, and hardness are shown in Table 5.

* The variety of microrganisms isolated from the samples from the groundwater wells was initially surprising. However, on consideration it was determined that these organisms were not uncommon to the general soli-water environments.

Some organisms were plated out as facultative anaerobes but could not be isolated in pure culture. It is possible that these could be anaerobes functioning as aerobes under the influence of some dissolved oxygen in the groundwater.

Organisms isolated and identified do not exclude the presence of others, but may very well represent those most easily isolated. Slower growing organisms may well have been obliterated by more rapidly growing ones.

The microbiological flora present may only be representative of the season of the year and the conditions at the time of sampling. It is difficult to speculate as to the products of metabolism, that may be representative of certain genera of organisms, which would limit proliferation of other organisms or create toxic conditions for the general flourishing at a given time. A summary of the laboratory findings is included in Table No. 6.

* As a matter of general interest, ambient air temperature, temperatures inside the well casings and liquid levels were recorded for landfill observation wells A, B, and C, and groundwater well No. 1. These data are shown in Table No. 7.

* As described earlier, the landfill wells were fitted with gas sampling devices to permit collection of specimens for determination of methane, CO₂, H₂S, Ammonia, and other gases. The results of the examination of these samples are shown in Table No. 8.

* The possible presences of herbicides and pesticides in leachates collected from the landfill observation wells was investigated by the use of standard chromatographic techniques. However, their presence was not confirmed. It was noted that because of the high concentrations of greases and oils in the samples, along with a high color, it was not possible to prepare these samples properly for the testing procedures. See Table No. 9 for results.

* Tests were carried out for heavy metals on samples of leachates from the landfill observation wells. It was found that mercury, lead, and cadmium were absent and that the concentration of copper, zinc, and nickel, were about the same as those observed in samples from the groundwater wells. See Table No. 10.

* Although boron compounds were used as tracers for determining the movement of leachates from the sanitary landfill to the groundwater observation wells, positive proof of their effectiveness as water movement indicators cannot be unquestionably stated at this time. The absence of boron in the ground water samples seems to verify a lack of sanitary landfill-groundwater interaction since boron compounds were seeded into the landfill observation wells.

There was no evidence in these preliminary findings that was an interchange of pollutants between the Frostburg sanitary landfill and the adjacent groundwater observation wells.

PRELIMINARY WATER SAMPLING PROGRAM FROSTBURG SITE NO. 1 & WESTERNPORT SITE NO. 2 RESULTS OF LABORATORY EXAMINATIONS

			,		,		, , , ,	, .																												
	Date	Source	£	Nonfiltrable residue	Volatile residue	Nitrite	Nitrate	Dissolved	Oxygen demand (biochemical)	ده ا	Filtrable residue	Color	Turbidity	Chloride	Nitragen	Albuminoid	Ammonia	Total residue	Alkalinity (Ca CO3)	Hardness (Ca CO ₃)	tron	Silica	Aluminum	Calcium	Maquesium	Manganese	Carlinnate	Sulfate	Fluoride	Carbonate stability	14	Alkalinity	Copper	Lead	Sodium	ABS (Alkyl henzene sulfonate)
			_	mg/1		mg/1	<u> </u>	mg/1	+	 	 	UNITS	UNITS	mg/1		mg/		mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1		mg/1;		mg/1		mg/1	mg/1
٠	1	2	3	-4	5	6	7	- 8	9	10	11	12	13	14		15		16	17	18	19	20	21	22	23	24	25	26	27		28		29	30	31	32
	3/16/67	LP-1	4.3	- 6.0	=	.008	<u> </u>	9.5	-	- 14	122	3	3	4	L	-	_	120	103	97	0.0	6.0	.02	40	6.4	0.0	20	12	0.1				0.0	.002	-	<u> </u>
	3/21/67	LP-1	-	2		.001		8.1	1:3	.25		3	2.7	2.2	_	.04	Ξ	202	128		0.1	5.8 9.0	.02		12	0.0		22	0.0		7.7	68	0.0	.001	=	┝═╌
i	1/15/68	LP-1				=			=	=	-		10	3.5		1:	-	154	125		0.1	7.0	.05	138	82	1.5	=	23	0.1			=	0.1	.01		
	4/2/68			- -	=	=	1.1	 -	 -	 -			3	3.0		=	\vdash		98	93	0.0	_=			= 1		-	-	=			118	0.3	1	=	=
	7/2/68	LP-1			Ξ		1.0		-				5	7.5		=	=	266			0.0	-		=	-	三	-	=			= 1	- 1			0.0	-
i	10/68	LP-1	2.7	2.0	-	=	.24		-		==			-		=	Ξ	L - T		<u> </u>			=	-	-	- -	=					156	=		=	=
	4/30/69	LP-1	6.7		-		.60	_=	+=-	.12	=		3	273 9	-	=	=	244	270		0.1	6.8	.076	40	4.5	0.0		9.4	0,1			140	.025	.021	1.5	0.1
į	8/14/69	LP-1			\equiv	\equiv	1.6		! -	<u> </u>			5	3.8		=	 = -		126	151	0.1	=		 	<u> </u>			Ξ		·	-	= 1			1:-	
_	10/24/69	LP-1		==	 	ı	1.8		 = 	=		3	3	4.3	7	=	=		87	85	0.0		- 1	= +				=	=			= -	=	=		\equiv
	5/4/70	LP-1			-	=	.06	 -	=	=		3	3	1.8		-	 	256			0.70			==			=					=+	=	=	=-	
٦	7/8/70	LP-1					3.4		-	_		3	2	1.0	-	 - -	=	150		270		=	= +	- -	:	-	-	=	=			= 1		_		
١	1/15/68	LP-1			-		.06	_	=	-:	_	1	2.5	15		=	Ξ	338		246		=		 -	= :		=-		0.10			-	\equiv		2.0	
	4/2/68	LP-2		-		.16	=	 -	 -	=		70	30	2.5	_			<u>i 754 i</u>	33	438	9		-				= ;	-=-	 -		_	=-	- -	- -	=	
	7/8/68	LP-2	6.8	_		.04	_	==	 - -	=		3	32	3.0 8.5		-	=	834			12		<u> </u>	=								=+	 		6.5	-
- 1	10/68	LP-2		-		.60	_	_	-	-	-	25	30	11			=	920		406	- }	=	=	-					= 1			= 1	_=_	= 1	3.5	
- 1	2/3/69 4/30/69	LP-2		1.0	-	.08	=		-	.14		5	3	208		=	-	740			;	13		12.4	35	2.6		385	-			= 1				Ξ
	9/18/69					.50	0.6		-	=		90	10	13			=	684	29	399	1			=	<u></u> -		-	-	.30			02	<u>-</u>	.005	7.5	0.1
	10/2/69	LP-2	6.1		_		0.10		-	=		8	20	19 5.0			=	806			2.0	= 1	- 1	\equiv					.20			-+	=-		6.0	=
ļ		LP-2			=		0.60					17	28	8.5	_	=	 - -	766 840			8.0 7.5		= +			-		=			_	= 1			-	
- "}	4/30/70 7/8/70	LP-2		=	=		1.7		-	-		50	30	14		_	=	970		439	5.0	=	+	- 	=	 ;	- :	-	.40			=	=		5.7	
1		LP-2		=	=		0.10	_=	=			96	53	1.5	L			1040	29	569	9.0	=			= :	- -	-= :	-+	0.40			= -	=	=	= 1	\equiv
ľ	2/20/67	LP-3	7.6		-		.08		=	- -		15 70	77	5.5		1	=	732		420		-	-			= 1		_	-	_		=+	=+		6.5	\equiv
Ţ	3/16/67	LP-3	7.3	22		.012	.40	10.0	3.2	.06		50	15	5.0			0	96 116		26	1.0		0.0						.3	8	.0 3	15				_
ŀ	3/21/67	LP-3		26		.0005		1.3	3.8	.20	94	45	16	0.5			.2 -		23					34		.3	0.0		.3	8.			0.0	.001	- 1	
ŀ	11/7/67			''	= 1	.007		9,4	2.7	.03		55	7	5.0		.22	800.	126	32	49								47							=	=
t	1/15/68			=	= 1				2.5			25 70	30 15	4.8		=					1.4				_ :	=		-	 -+				.03	.005	=+	\equiv
	4/2/68	LP-3	7.3	=	- 1		.18	_		_		30	5	2.0	-	=	=				1.6	- +		-				- 1	= 1		-		_		- +	 -1
ŀ		LP-3		=	-		,30	-	=			90	25	7.3		,	_				,6 9.0	=+		=	-	- +	- ;	-				-	=		4.0	==
ŀ		LP-3			=		0.0	-	-				7	8.0	\Box		=	108	58	72	.5		-		= +	- +	 -	=+	- +	8. 7.	2 6	.0			-	
l		P-3		14	-+		0.14	-	=	0.0		10	10	176		_	=				4		=	= 1			:	= 1	_				=+	=+	-	-
Į	4/30/69			= 1		-	0.20			-		40		6	-		=-					7.6	0.14	15			0.0	29	0.2	7.				006	1.0	0.1
-	10/21/69			- 1			0.10	==		=		35	15	7.5	⊐	_	_				0.60	=	=+	 +	-+	-+	-	-+	-+	-4-	- -			- I	- 1	
H	7/8/70	P-3		=	=+		0.14		-	-		20	10	.11	\Box		=				0.40		_	-	_	-+	=+	- +	=+	- -	- +-	: 			-	
r	2/26/71			_	-+		0.12	=	-	=		45	4.5	1.0	4	_				62	0.80	<u> </u>		_		_	_	=+	0,20	╼		_	=+		4.5	
	4/30/69	P-4 (5.4	_	-	_	= :	_	_	-		40 50	23	15	-+	=	=				0.20	-		-	= :		_ :	-	_						-	-
- [10/24/69	P-4	7.0	- 1	$\equiv 1$		-	-		-			10	- .	+	=-1	=				0.20	-+		-			-									
ŀ	8/24/69 1/13/70	P-4 7	7.2	$=$ \top	-	- 1	7.2	<u> </u>	=	\equiv		40	12								0.30			- +	- +	=+		-	=	JE		_				===
┢	4/30/70	P-4	5.5	=-	=	=+	- I	-	=	=			5			=	=	138	29	59	0.30	= 1				-+	-	-+	=	+=		-				= ⊒ .
٦	7/8/70	P-4	7.2	 	-	-		 -	\dashv				1.5	7.1		=	-				2.0	=	=			- 1		=	-+	-† <u>-</u>		-				-
	2/26/71	.P-4 (5.5	- 1	= 1	- 1	0.05		- 1	-	- +			28		=	=	168	51		0.10	-		- T	= :	=		-	0.20		=					=- ↓
F	1/15/67		\equiv	=	$\equiv 1$		- 1	_= 1	- 1	\equiv			•	-	_	-	=		- +	- +	- +	+	- i	-+	-+	- ;		= [=	JΞ				= [=	===
ŀ		P-5	- T	-	=	=	.30	=	=	Ξ	= 1		=		ゴ	=	=		-		= +	=+	=+	- -	- +	- +	-: -	=+	-	+=			-			
E	7/2/68	P-5			=+		.30	- +	=	=		10		4.5			\equiv			50 2	2.0	\equiv	=	-	$\equiv \bot$	= +	<u> </u>	= +	=	- =	- =	: 			-	╧┦
	10/60	. P S []	0	===	<u>:</u>		20						90	5.5	+		=-				L.8			=-	-	- T	- [=		8.0	48				_	=-
ţ	4 30/69	• • •	l			•			7						╛			.952		145	·	- -	=-		=_	-	- -		-	JΞ						=]

138-

(Bed)

TABLE NO. 4
PRELIMINARY WATER SAMPLING PROGRAM
FROSTBURG SITE NO. 1 & WESTERNPORT SITE NO. 2
RESULTS OF LABORATORY EXAMINATIONS

Date	Source	μн	Nonfiltrable residue	Volatile residue	Nitrite	Nitrate	Dissolved oxygen	Oxygen demand (biochemical)	Phosphate	Filtrable residue	Color	. Turbidity	Chloride .	Nitrogen	Albuminoid	Ammonia	Total residue	Alkalinity (Ca CO ₃)	Hardness (Ca CO3)	Iron	Silica	Aluminum	Calcium	Magnesium	Мапдапезе	Carbonate	Sullate	Fluoride	Carbonate stability pH	Alkalinity	Соррег	Lead	Sodium	ABS (Alkyl benzene sulfonate)
	<u> </u>		mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	UNITS	UNITS	mg/1		rng/1		mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1		mg/1	mg/1	mg/1	mg/1
1	2	3	4	5	6	7	8	9	10	11	12	- 13	14		15		16	17	18	19	20	21	22	23	24	25	26	27	28		29	30	31	32
3/16/67	LP-6	7.1	11	=	.016	.70	10.6 12.6	-	.05	224 204	20	10	6.0		.652	.004	248 208	17	106	0.2	6.9 5.0	.01		22	.10	0.0		0.1	7.7	29	0.0	.005		
11/7/67			-	-	-	.10	=	-	-	=	25	30		-	_	-	1562	1		50.		- 05	5.4	80	.90		53	0.3	7.2	79	0,1		1	
1/15/68	LP-6	-	_=	=	=	=	Ξ	ΙΞ.	-	_			==		==	=_	1	=_	ı	_	_	_		_	=		1	_	 '	-	-28		=	
2/2/68 7/2/68	LP-6		-	-	-	.50	=	 -	 -	=	50	190	71 52	<u> </u>	=	-	1238	397	160 288	10	-	=	=	=	=		Н	=	=	Ξ	Ξ	-	46	
10/68	LP-6			-	-	.10	-	 -	-	 - -	70 .	30	82	_	=	=	702	248	176	10	=-	=	=	=	 	-	-	=	7.6	107			1	
2/3/69	LP-6		58	_	_		\equiv	_	1.64	\equiv	60	25	307		=	=	3162	210	324	75	26	2.2	284	82	0.0	0.0	337	1.0	6.0	369	.05		186	
10/24/6			-		-	0.3	=	 -	=	=	120	100 300	341 23	-	=	=	7058 37414				-		_				-	=	-	=	-	_	_	
4/30/70					 	3.0	-	 -	=	_	400	112	192	-	=	=	3316			100	-	=	=	-	=	=	-	-		-	-			
2/20/67	LP-7	6.9	_	=		.04		=	=	278	12	5.	10		=	4:0	272	171	204	1.0	7.7	0.0	61	18	0.35	0.0	52	0.3	7.6	162	0.0	.005	-	
3/16/67		6.9	12		.012	.08	8.4	.2	.03	336		3	9		.036	.180	352	184	212	1.5	5,5	.03	77	21	0.4	0.0	78	0.1	7.4		0.02	.004		
3/21/67	LP-7	6.8	90	=	.0015		1.3 5.4	4.2	0.0	270	15	7,0	4.0 5.5		.032	.144	340 266	158	190	.90	8.0	.05	180	160	0.75		44	0.2			< 0.1			
11/7/67	LP-7		<u> </u>	=	-	.08	-	 - -	=	-	7	7	10	-	-	-	256	165	205	1.2	- 1	-0.3	33	 	=	0.0	34	0.2	7.4	167	0.0	.004	=	 =
1/15/68	LP-7	_				_	-		_	=		-				_	-		-	_		-	=		_	=	_	=-	 '. -	133	-	=		H
7/2/68	LP-7	ļ-	-		=	.10	-	=	=	=	12	5		,	=	=	-	ļ -				-	-	-	=			_=_	_		ŀ		_	=
10/68	LP-7			-	-		-	 = 	1=		 	-	9.5	-	 	=	274	150	190	2.2	=	=	-	=	=		-		7.5	155	_		1	
2/3/69	LP-7		-			-	-	-	<u> </u>	=	_				-	_	_	-	-	=	=	==	-=-	-	=	-	=	=		-	1		ij	
4/30/69	LP-7		_	_	=	3.0	_	-	-	=	120	100	341		-		7058	1975	2310	200	_				_	_	_	-	6.5				_	+=-1
2/3/69	LP-8		0.0	-		.16	=	├ ≡	.23	-	3	3	309	_	 	=	564	-177	238	3.0	7.2	.27	112	18	.65	0.0	61	.1	6.8	119	0.0		2,5	0.1
10/24/69				-	-	1.8	-	+=	=	=	3	3	7.3 4.3		=	=	258 104	87	202 85	0.0		<u> </u>		=			-	<u> </u>	-				I	
10/31/6				-	=	0.04	_	-	-	=	10	25	9.3	_	=	 Ξ	256	200		2.0	= -		-	=		-	_	0.3	-	1		_	1	
4/30/70	LP-8	7.3		_	-	0.30		=		-		10	11		-	=	242	194	218	2,0	-	= :	-		=	=	=		 	-	1		1	=
2/26/71				_		0.28	_					2,3	11		=	1	256	193	207	1,5	-	-		I	_	-	-	_	-	_	_	-	_	-
10/8/68	LP-12			=	 -	2.0	=	=	=	=	7	15	4.5 5.5	_	<u>-</u>	=	276 252	98 100	153	.30	-	ı					I				-	_		
2/3/69	LP-12		50	=	-	2.0	-	-	.08		5	10	179		=	=	348	-117	139	.10 .10	11	.13		12	0.0	0.0	-	0,2	17.7	104		_		
4/30/69	LP-12	7.2	_	-	-	1.1	_	-	-	_	5	3	6.3		_	-	282	106	165	۳=-	0.0		-	'-	-		-	-	17.3	106	.10	0,0	4.0	20.1
8/14/69			1	1	-	-		_	_	-	25	25	-		_	-	522		174	.50		_				1		=	-	_		-		
1/15/70			1			1.4	=	 = -	-=	=	3	3	5.8	-	=	=	336 304	136	224 183	.70	-	-	=		-					F	-	-		
4/30/70				-	-	.06	=	-	-	_	45	30	11	_	_	=	246	95	167	0.0		=		-	=	=		-		-				
7/8/70	LP-12	7.0	=	-	=	-	Ξ	Ξ	Ξ		5	1	-		_	Ξ	368	102	194	0.0	=	_	-	-	- -	=		0.10	+=	=	-	-=-	8.3	-
10/20/67				=	=	.04	1	-	-	=	3	5	3.5		-	-	664	24	422	.40		_		=	Ξ.				7,8	31	0.0	-	-	
10/3/68				-		0.0	=	=	1.0	=	7	20 97	5.8				2192	.53	902	14	-	·• <u>·</u>				-			17.4	53		-	-	-
2/3/69 4/30/69	LP-13		120	=	- -	.16	 	+=	1.0	=	30 7	45 .	270 8.0	-	=	 - -	3026 3076		1600		101	14	480	115	8.0	0.0	1607	0.5	6.4	140		.002		<0.1
2/2/70	LP-13	12.9			_	.04	Ξ	-			45	300	13				3816		854		=	=	-	=	=	=	=	=	=	1			=	-
7/8/70	LP-13		_	=	_ 	.30	=	-	=	=	520	58	3,5	$\overline{}$	_	-	1652	552	327	35	_	_			_=_		-	-				=	=	-65
8/14/70					 -	.20	! -	-	=	=	120	80	-11-		- -	-	3362		430	600		1		-						H			- ;	0
7/8/68	LP-14		-		=	.60		 -	+=	=	12	1000	5.5 9.0	_	=	=-	3512 7028	-318 -35	1594	120	-	-		 -	-	- -	=	=	7.0	119	0.18	1	- 6	لتيتا
10/8/68			_	_	-	.04		1		=	20	7	6.3		=	-	3038			18	-	=		=	=	- -	=	-	7.7	263	=	=	-9	- =
2/3/69	LP-14		2248			.08	Ξ.		0.0		10	800	28.9		=	Ξ	3144	-757	797	100	1995	9.4	448	125	90	0.0	1847		6.5	151	0.25	0.36		
4/30/69				=		.60	ΙΞ.	-	-		10	40	6.3		=_		3320	-160	1602	35	1	-		_	_		-	_	-	1		_	_	
10/2/69			=	=	=	.18	=	=	┝═╌	=	90	800 30	3.7 4.5	_	· _ ·	=	3728 3452		457	140	-	-			-		-	=	=	_		==	= 1	=
2/4/70	LP-14		=	+=	-	.10	+=	+=	 	 	70	800	3.7	-	=-	+=-	6720			75	-	-	=	=		-		=		-	=	=	=	=
7/8/70	LP-14			-	-	.24	_	– .	-	_	86	90	1.5	Т	-	-	2782		486	35	_	=		=			=	0.8	- <u>-</u> - -	=	-		18.0	=
																•																		

-139-

		T	n	ng/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	UNITS	UNITS	mg/1	mg/1		mg/1		mg/1		mg/1	mg/1	mg/1	mg/1.]											
1	2	3		4	5	6	7	8	9	10	11	12	13	14	15		16	17	18	19	20	21	22	23	24	25	26	27		28	, ,	29	30	31	32	
7/22/68	LP-1	5 7.	2	_		_	4.0	_	-	-	-	3	3	8.5	_	-	658	84	310	0.10			· -	_	T -	-	_	_	·	_	-	_	_		-]
				0.0		-	.24	_	_	0.0	_	5 -	3	114	_	—	706	-67	482	1.4	35	.32	170	35	.5	0.0	327	0.2		7.3	76	0.0	.001	1.5	< 0.1].
4/30/69	LP-1	3 7.	•	-			2.4	_	_	_		7	. 3	7.5		_	604	79	369	0.0	ĺ		-	į	_		_			1	-	-	-	-	-	1
8/4/68	LP-1	5 6.	9	-	_	=	3.2	_	T -	_		3	. 3	8.5	-	-	768	102	401	0.0		_			_	-	-			-	-	I	1	1	-]
10/21/69	LP-1	5 6.	,	= 1		_	2.4	-	_	_	_	3	3	5.8	-		770	105	404	0.10	-	_		ı	_	_	-	1		1	_	ı	1	1	_]
4/31/70	LP-1	5 6:	6			_	14	_	T =	T -	T =	10	5	2.1		_	330	35	176	0,30	_	_		_	_	_	_	-				1	-	-]
9/8/70	LP-1	5 7.	2			_	8.0	_	\equiv	_	_	5	2	2.0	T -	-	758	88	310	0.10	-	-	_	1	-	_	_	_		1	1	ı	1	_	-]

FROSTBURG SITE NUMBER 1 RESULTS OF LABORATORY EXAMINATIONS

2475			· · · · · · · · · · · · · · · · · · ·		RESULTS	OF LABORA	TORY EXAMINA	ATIONS		•
DATE	TEST WELL NUMBER	LABORATORY NUMBER	DEPTH TO WATER	рН	TOTAL RESIDUE mg/l	VOLATILE	CHLORIDES mg/l	OXYGEN DEMAND (BIOCHEMICAL)	TOTAL IRON mg/l	HARDNESS mg/l
17 Jun 71	1	WML 7127		6.0			 	mg/l		
7 July 71	1	WMA 7202	52'	6.2	533	381	10	35.5	30	
10 Aug 71	1 . 1	WMB 7209	53'	6.4	552	361	23	720.0	26	370
15 Sep 71	1	WMC 7214	52'		438	153	10	1	26	300
14 Oct 71	1 1	WMD 7208	54'	6.4	397	104	26	4.0	14	35
17 Jun 71	2	WML 7127	34 ·	7.0	299	126	•	4.2	10.5	200
7 Jul 71	2	WMA 7202	53 .	5.6	218	149	11	9.6	6	200
10 Aug 71	2.	WMB 7209	56 ′	5.4	372	285	10	7.8	2.8	220
15 Sep 71	2	WMC 7214	55 ′	5.7	561	89	12	1	7.1	175
14 Oct 71	2	WMD 7208		6.0	298	69	12	5.0	.75	195
17 Jun 71	3	WML 7127	53′	6.4	239	94		5.4		225
7 Jul 71	3	WMA 7202		5.3	357	276	11	4.8	1.5	250
10 Aug 71	3	WMB 7209	64'	5.2	272	200	13	5.4	18	60
15 Sep 71	1 3	WMC 7214	66'	5.7	416	73	14		0.6	110
14 Oct 71	3	WMD 7208	67' 66'	6.0	2184	51	10	. 2	6.1	125
17 Jun 71	1 4	WML 7127		6.6	292	109	i .	725	1.5 1.5	180
7 Jul 71	4	WMA 7202	Dry			•			1.3	225
10 Aug 71	4	WMB 7209	Dry	· [-	,		•	
15 Sep 71	4	WMC 7214	Dry	- 1			Ì			*
14 Oct 71	4	WMD 7208	Dry.	- 1						
17 Jun 71	5	WML 7127	Dry]		
7 Jul 71	5	WMA 7202	36'	5.8	827	71	5	11,4	20	[
10 Aug 71	5	WMB 7209	45'	5.6	412	348	10	6.6	26 9	100
15 Sep 71	5	WMC 7214	52	6.0	651	83	12	5.9	31.5	150
14 Oct 71	5	WMD 7208	54'	6.1	337	. 65	8	3.0	11.5	170
17 Jun 71	6	WML 7127	34 .	6.8	1620	167		2.4	58.5	150
7 Jul 71	6	WMA 7202	42'	5.9 5.7	588	507	9	4.2	13.0	125
10 Aug 71	6	WMB 7210	45'		150	106	7	3.9	0.7	50
15 Sep 71	6	WMC 7213	48'	6.1	532	60	18 -		0.0	70
14 Oct 71	6	WMD 7209	53'	6.0	260	21	8	1	7.5	95
17 Jun 71	7	WML 7127	33	6.8	486	81	- 0	2.4	12	150
7 Jul 71	7	WMA 7202	21'	6.1	665	552	8	4.2	200	140
10 Aug 71	7	WMB 7210	28'	5.6	704 :	600	8	5.4	190	75
15 Sep 71	7	WMC 7213	33,	6.1	2220	. 232	10		140	110
14 Oct 71	7	WMD 7209	31'	6.1	386	30	10	. 3	180	60
17 Jun 71	8	WML 7127	- 31	6.9	1273	1143		2.4	320	100
7 Jul 71	8	WMA 7202	33′	5.2	242	196	8	1.2	16	130
10 Aug 71	8	WMB 7210		5.2	215	171	8	3.9	2.1	50
15 Sep 71	8	WMC 7213		5.9	806	49	11	i	54	75
14 Oct 71	8	WMD 7209		6.1	176	31	10	: 2·	9	75
17 Jun 71	9.	WML 7127	- 1	6.5	964	889	İ	2.4	16.5	170
7 Jul 71	9	WMA 7202		4.7	717	629	8	4.2	16	75
10 Aug 71	9	WMB 7210	1.	4.9	241	180	6	4.8	1.3	40
15 Sep 71	9	WMC 7213		5.1	786	57	- 11		24	25
14 Oct 71	9	WMD 7209		5.7	351	35	10	3	11.5	55
17 Jun 71	10	WML 7127		6.0	356	226		3	6.5	100.
7 Jul 71	10	WMA 7202		6.1	1497	1315	7	13.8	12.0	130
10 Aug 71	10	WMB 7210		6.3	447	349	. 8	4.8	1.4	220
15 Sep 71	10	WMC 7213		6.6	399	62	12	1.5	5.9	145
14 Oct 71	10	WMD 7209		6.4	347	77	8	3	4.5	160
1	· -	/ 203	71'	6.7	462	262	. 1	3	5	175
		i	l l	. 1				- 1	9 (200

-141-

(Red)

TABLE NO. 6 MICROBIOLOGICAL STUDIES FROSTBURG SITE NO. 1 MARCH 10, 1971

LABORATORY PROCEDURE	GROUNDWATER OBSERVATION WELL NO. 3	LANDFILL OBSERVATION WELL A
COUNTS		
Aerobic Plate Count Aerobic Spore Count Facultative Anaerobic and Aerobic Spore Count MPN - Total Coliforms MPN - Fecal Coliforms Fungus Count	150/100 ml	8,000/ml 3,500/ml 480/ml 93/100 ml 0/100 ml 320/ml
ISOLATIONS		
Fungi	Pencicillium Mucor Rhizopus Aspergillus niger	Mucor Actinomycetes
Aerobic Spore Formers	Bacillus megaterium Bacillus cereus Mycoides (various)	Bacillus subtilis Bacillus cereus Mycoides (various)
Other Aerobic Organisms (Gram		
Negative)	Enterobacter aerogenes Enterobacter cloacal Alcaligenes faecalis	Absent
Anaerobes	Absent	Clostridium tertium Clostridium sporogenes

TABLE NO. 7

TEMPERATURE AND LEACHATE LEVEL DATA

OBSERVATION WELLS

FROSTBURG SITE NO. 1

·	Well Identi-	Ambient Air	Temperature in Well Casing (30'	Leachate
Date	fication	Temperature	Below Surface)	Depth (fee
Aug 30, 1970	Landfill Well A			
Nov 4, 1970	do.	36 ⁰ F	- 65 ⁰ F	3.0
Nov 28, 1970	do.	40°F	60 ⁰ F	4.0
Dec 4, 1970	do.	39 ⁰ F	50° Г 57 ⁰ Г	-
Jan 6, 1971	do.	10 ⁰ F	57°F	1.0
Feb 8, 1971	do.	26 ⁰ F	55 F -57 ⁰ F	
Aug 18, 1971	do.	20 F	57 F	_
20, 2012	uo.			dry
Aug 30, 1970	Landfill Well B	-	, <i>f</i>	dry
Nov 4, 1970	do.	36 ⁰ F	68 ⁰ F	8.0
Nov 28, 1970	do.	40°F	63 ⁰ F	0.0
Dec 4, 1970	do.	39°F	61 ^o F	6.4
Jan 6, 1970	do.	10°F	59 ⁰ F	0.4
Feb 8, 1970	do.	26 ⁰ F	59°F	. .
Aug 18, 1971	do.	-		1.0
* .			•	
Aug 30, 1970	Landfill Well C	-		dry
Nov 4, 1970	do.	36 ⁰ F	59 ⁰ F	dry
Nov 28, 1970	do.	40°F	52 ⁰ F	-
Dec 4, 1970	do.	39 ⁰ F	46 ⁰ F	2.3
Jan 6, 1970	do.	10 ⁰ F	43 ⁰ F	_
Feb 8, 1970	do.	26 ⁰ F	44 ⁰ F	
Aug 18, 1971	do.	-		dry
Aug 30, 1970	Groundwater Well-1			
Nov 4, 1970	do.		51 ⁰ F*	-
Nov 28, 1970	do.	40°F	51° F* 52° F*	_
Dec 4, 1970	do.	TU. I	52" F*	-
Jan 6, 1970	do.			-
Feb 8, 1970	do.		- ·,	-
Aug 18, 1971	do:			-
		-	· -	-

^{*} Temperature was measured 20 feet below surface instead of 30 feet.

TABLE NUMBER 8 FROSTBURG SITE NUMBER 1 RESULTS OF LABORATORY EXAMINATIONS GAS SAMPLES FROM OBSERVATION WELLS

DATE	SOURCE	METHANE (percent)	CARBON DIOXIDE (percent)	HYDROGEN SULFIDE (percent)	AMMONIA (percent)	OTHER (percent)
	Observation					
5 Oct 71	Well A	53%	27%	Not Detected	Not Detected	Not Detected
120ct 71	"	48%	28%	Not Detected	Not Detected	Not Detected
19 Oct 71	,,	55%	31%	******	"	"
27 Oct 71	"	55%	28%	••	"	"
2 Nov 71	"	56%	27%	,,		"
9 Nov 71	"	52%	27%	"	"	"
16 Nov 71	"	56%	24%		"	"
22 Nov 71		49%	26%	"	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7 Dec 71	"	67%	28%	.11	"	"
12 Jan 72	"	60%	28%	· · · · · · · · · · · · · · · · · · ·	".	
2 Feb 72	"	59%	24%	,	"	O ₂ & N ₂ Detected
18 Apr 72	. "	56%	31%	"	,,	O ₂ & N ₂ Detected
	Observation					
5 Oct 71	Well B	56%	31%	Not Detected	Not Detected	Not Detected
12 Oct 71	"	58%	32%	**	"	• "
19 Oct 71	<i>"</i>	48%	21%		"	. "
27 Oct 71		57%	32%	"	"	"
2 Nov 71		43%	32%	",	,,	**
9 Nov 71		58%	28%	. "	"	"
16 Nov 71	"	56%	32%	,,	••	**
. 22 Nov 71	"	64%	36%	"	11	. "
7 Dec 71	"	61%	23%	, ,,	"	,,
12 Jan 72	"	62%	27%	,,	"	**
2 Feb 72	"	47%	21%	"	"	O ₂ & N ₂ Detected
18 Apr 72	,,	53%	30%	"	. ,,	O ₂ & N ₂ Detected
	Observation					
5 Oct 71	Well C	58%	30%	Not Detected	Not Detected	Not Detected
12 Oct 71	"	41%	22%	"	"	"
19 Oct 71	"	65%	29%	"	"	"
27 Oct 71	,,	59%	31%		"	
2 Nov 71		47%	32%	**	,,	**
9 Nov 71		26%	15%	**	,,	••
16 Nov 71		56%	30%	"	.,	,,
22 Nov 71		59%	31%	······································	"	
7 Dec 71		64%	29%	**	"	"
12 Jan 72		64%	28%	.,	"	"
2 Feb 72		60%	25%		"	O ₂ & N ₂ Detected
18 Apr 72	"	57%	30%		,,	O ₂ & N ₂ Detected

TABLE NO. 9

RESULTS OF LABORATORY EXAMINATION OF PESTICIDE AND HERBICIDE SAMPLES

ORIGINAL (Red)

OBSERVATION WELLS FROSTBURG SITE NO. 1

WELL IDENTIFICATION	PESTICIDES Parts per billion (ppb)	HERBICIDE
IOUNDWATER WELL NO. 1 (1969 - 1971)	SULFUR — 3.3 p.p.b. (CTLC) DDT — 0.5 p.p.b. (NCTLC)	NEGATIVE
OUNDWATER WELL NO. 2 (1969 - 1971)	SULFUR — 0.27 p.p.b. (CTLC) DDT — 0.41 p.p.b. (NCTLC)	NEGATIVE
OUNDWATER WELL NO. 3 (1969 - 1971)	SULFUR — 1.2 p.p.b. (CTLC) DDT — 0.5 p.p.b. (NCTLC) DDD — 0.1 p.p.b. (NCTLC)	NEGATIVE
OUNDWATER WELL NO. 4 (1969 - 1971)	SULFUR — 1.0 p.p.b. (CTLC) DDT — 0.34 p.p.b. (NCTLC)	NEGATIVE
OUNDWATER WELL NO. 5 1969 - 1971)	SULFUR — 0.6 p.p.b. (CTLC) Peak rf value — 2.6 (unidentified)	NEGATIVE
OUNDWATER WELL NO. 6 1969 - 1971)	SULFUR — 3.3 p.p.b. (CTLC) Peak rf value — 2.8 (unidentified)	NEGATIVE
OUNDWATER WELL NO. 7 1969 - 1971)	SULFUR — 0.08 p.p.b. (CTLC) DDT — 0.2 p.p.b. (NCTLC)	NEGATIVE
DUNDWATER WELL NO. 8 1969 - 1971)	SULFUR — 0.08 p.p.b. (CTLC) DDT — 0.2 p.p.b. (NCTLC)	NEGATIVE
OUNDWATER WELL NO. 9 1969 - 1971)	SULFUR - 0.36 p.p.b. (CTLC) Peak matched that of Atrazine - 0.32 p.p.b. DDT - 0.24 p.p.b. N/C Either DDT or Atrazine by TLC	NEGATIVE
DUNDWATER WELL NO. 10 1969 - 1971)	SULFUR — 0.2 p.p.b. (CTLC) Peak matched that of Atrazine 1.1 p.p.b. DDT — 0.32 p.p.b. — N/C DDT or Atrazine by TLC	NEGATIVE
IDFILL OBSERVATION WELL A opled October 15, 1970)	NEGATIVE	NEGATIVE

C - Confirmed by thin Layer Chromatography LC - Not confirmed by thin Layer Chromatography

TABLE NO. 10 SUMMARY OF THE RESULTS OF THE CHEMICAL EXAMINATIONS OF WATER SAMPLES FROM THE GROUND WATER TEST WELLS FROSTBURG SITE NO. 1

*SUBSTANCE mg/l			GROU	NDWA F		TEST BURG	WELI	LS AT		•	DISCUSSION OF LABORATORY RESULTS
	1	2	3	4	5	- 6	7	. 8	9	10	,
Lead	.168	.467	.116	.190	.182	.214	.033	.080	.390	.040	In only two instances, wells 7 & 10, did the lead concentration fall within PHS standard of 0.05 mg/l
Cadmium	.003	.004	.004	.005	. 009	.007	.003	.007	.009	.006	In all cases, the concentration of cadmium remained below the PHS standard of 0.01 mg/l
Copper	.021	.022	.022	.020	.019	.017	.023	.012	.024	.012	The concentrations of copper, in all test wells, were well below the PHS standard of 1.0 mg/1
Mercury Chromium Boron Phenol			· .				·				ABSENT
Zinc	.043	. 036	.023	.049	, 043	.008	.030	. 212	.040	.044	Concentrations of Zinc were well below the PHS standard of 5 mg/l
Nickel	.006	.000	.000	.009	.006	.004	.008	.000	.005	.006	The concentrations of Nickel in all wells were minimal but PHS standards are not available for comparison
Chlorides	1.20	0.34	3.10	3.70	1.10	1.10	1.70	0.80	0.60	0.60	The water in the test was practically free
Suspended Residue	1246	265	476	437	5068	1295	3245	72	808	730	of chlorides. Total solids were quite high in all wells and in all but two instances exceeded the PHS standard of 500 mg/l
Total Residue	1509	438	677	581	5320	1464	3988	185	1025	843	<u> </u>

^{*}All substances with the exception of chlorides, suspended residue and total residue, are reported as the result of one sample.

Attachment I

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY **REGION III**

CENTRAL REGIONAL LABORATORY 839 BESTGATE ROAD ANNAPOLIS, MARYLAND 21401-3013 (410) 573 - 2799

ORIGINAL (Red)

DATE

: October 13, 1992

SUBJECT : Region III Data QA Review

FROM

: Cynthia E. Caporale Coconste

Region III ESAT RPO (3ES31)

TO

: Michael Taurino

Regional Project Manager (3HW73)

Attached is the organic data validation report for the Hoffman Landfill Site (Case 18347) completed by the Region III Environmental Services Assistance Team (ESAT) contractor under the direction of Region III ESD.

If you have any questions regarding this review, please call me.

Attachment

cc:

Jennifer Woods, MD DOE Edward Kantor, EMSL-LV

Regional CLP TPO: Tom Bennett

Region: IV

Lab Code: COMPU

TID File: 03920418 Task 1514

revised 03/91

Environmental Services Assistance Teams Region 3

1419 Forest Drive, Suite 104 Annapolis, Maryland 21403

DATE: October 1, 1992

SUBJECT: Organic Data Validation For Case 18347

Site: Hoffman Landfill

FROM: Hari Prasad ' Mahboobeh Mecanic ' '

Organic Data Reviewer Senior Oversight Chemist

TO: Cynthia E. Caporale

ESAT Regional Project Officer

THROUGH: Dale S. Boshart

ESAT Team Manager

OVERVIEW

Case 18347 consisted of twelve (12) aqueous and eleven (11) soil samples submitted to Compuchem Laboratories, Inc. for volatile, semivolatile and pesticide/PCB analyses. The aqueous samples included one (1) field duplicate pair and one (1) field blank and the soil samples included one (1) field duplicate pair. The samples were analyzed as a Contract Laboratory Program (CLP) Routine Analytical Service (RAS).

SUMMARY .

The samples were successfully analyzed for all target compounds except a few compounds in the semivolatile fraction. All other instrument and method sensitivities were according to the Contract Laboratory Program (CLP) Routine Analytical Service (RAS) protocol.

MAJOR PROBLEMS

- o In the semivolatile analyses, 3-nitroaniline had a relative response factor (RRF) less than 0.05 (< 0.05) in the initial calibration dated 6/15/92. The quantitation limits for this compound in the affected samples were qualified unusable ("R"). (See Table I in Appendix F.)
- o In the semivolatile analyses, sample CKY32 had the recovery for the acid surrogate, 2,4,6-tribromophenol, less than 10% and the quantitation limits for its acid compounds were qualified unusable ("R"). (See FORM-II SV-2 in Appendix F.)

OPHINAL

DATA SUMMARY

FORM:

BNAS

Name: HOFFMAN LANDFULL

WATER SAMP

#: 18347 Sampling Date(s): 6/23/92-

To calculate sample quantitation

limit: Factor)

. ,	Sample No.	CKY				CICY	طلا	CKY	17	CKY	18	CKY	19	CKY	120	CICS	/22	CKY	23
	Dilution Factor	1.0				100	1 1	1.0		1.0		1.0		1 . 7)	1.	מ	1.6	
	Location	BLK.	1	GNA		Giv1.	à <u>.</u>	CUM.	<u>ځي</u>	GrWL	<u> </u>	ConW	5	GWG	> .	SWI		Swa	
		Fields	lanl			Field	اعروا			<u> </u>	,	field! ofcr	λip	1, 4, 5		3.0		edathi-wa	
i	•	.				MEKI	19	,				occk	V16			oli cam tales			Ujgra 🔭
	·]				H (17)	' '					7	, 10				and i		
CRQL	COMPOUND	<u> </u>						l									13.		
10	N-Nitrosodiphenylamine	I				`						·					7		
10	4-Bromophenyl-phenylether																		1 -11 ·
10	*Hexach l orobenzene									,			,						
25	*Pentachlorophenol																		
10	Phenanthrene																		
10	Anthracene	L															•		
-10	Carbazole		<u> </u>																
10	Di-n-butylphthalate															·		1 × 104	17
10	fluoranthene												·	1	\$ 7			olychighwa	
10	Pyrene "														·				
10	Butylbenzylphthalate							, ,			į.				-				
. 10	3,34-Dichlorobenzidine							,						,					
10	Benzo(a)anthracene			l									_	·					1-1
10	Chrysene						I —								1.5		•		1-1
10	bis(2-Ethylhexyl)phthalate	2	B	.2	B	1	B	3	B	3	B	2	B	*6	R	6	B	Same 3	D
10	Di-n-octylphthalate		-									6		九九 /		Calabia Mari	3,000	った。自体を発	
10	Benzo(b) fluoranthene		-											in	3	January Jos		I HEALER	
10	Benzo(k) fluroanthene	1	<u> </u>	I										11.7	· (4):			118/19/24	11
10	Benzo(a)pyrene			1				******		1,			:	13 A	\$ 10	3884 Julia	40.30	Land Balling	
10	Indeno(1,2,3-cd)pyrene			1		l													4
10	Dibenz(a,h)anthracene										_		_					(Reg	
10	Benzo(g,h,i)perylene	·		1	_	l										,			
			1			H													†
		1	1-	11		1		``	_										11/
ليحيي		<u> </u>		<u> </u>		!! 	!===	! ————!											[السند

DATA SUMMARY

FORM:

8 N A S

Site Name: HOFFMAN LANDETLL

WATER SAMPLES

(µ9/L)

Case #: 18347 Sampling Date(s): 5/200912

sample quantitation

Factor)

	Sample to.	CKYOL	11 C K-125	CK /2-6		<u> </u>		<u> </u>	·	
. .	Dilution factor	1.0	1.0	1 1.6	1					
1	Location	SW12.	SUIL	Lin		 		A SECTION OF		- 55 (j
1		4.1			·			11. 排用量量:	and the second	A BENEFIT OF THE PARTY OF THE P
1		ľ							1994 (Miller - 199 4)	1199
l .		,								
11	•		· 			li i	. "			
CROL	COMPOUND		.	. ▮					·	
10	Phenol				<u> </u>	<u> </u>				
10	bis(2-Chloroethyl)ether									
10	2-Chlorophenol					 		1077	No steel steel	ichigár P.
- 10	*1,3-Dichlorobenzene							- 1 881 135°	3" a": 1 27 3	- 40 3 0.63
10	*1,4-Dichlorshinzere									-
10	1,2-Dichtorobenzene	:								
10	2-Hethylphenol									
10	2,21-Oxybis(1-chloropropune)		:					[
10	4-Hethylphenol								 	
10	H-Nitréso-di-n-propylamine									<u>-</u>
10	Hexachloroethane									
10	Nitrobenzene									September 19
10	l sophorone						N. 1	ora ida isa	1937 PW	海南海河
10	2-Nitrophenol							3. 3. 10 3.		101H 82404 1 15 1
10	2,4-Dimethylphenol									
10	bis(2-Chloroethoxy)methane	area a							 	
10	2,4-Dichtorophenol		<u>}</u>						 	
10	1,2,4-Trichlorobenzene				· ·					STANGES .
10	Naphthalene	1.						一般海绵排1 25 年	20.	所 建筑的 其形的 100
10	4-Chloroaniline							· 計会時間 報報	(Fed	HINGSHIME IS
								erentit erd.	MAL	-citalinating
		- ,								
										-

Limit

DATA SUMMARY FORM: B

ORM: BNAS

ite Name: HOFFMAN LANDFILL

WATER SAMPLES

(µg/L)

:ase #: 18347 sampling Date(+): 6/23/92

To calculate sample quantitation finits

(CRQL * Dilution Factor)

		1 6 1	12 ()	V 67 4 .															
1	Sample Vo.	<u>C '</u>			725				·			·							
	Dilution Factor Location	SWIS				(10		ļ											
	Location	-2/21	<u>></u>	_ 5 W	4-			·											
l		H				Ⅱ .				•				141	1 7] .		11. \$40.244	
Ì	•				•			-					: !				ار. نور د.		i ka
: .]		1	•			-		: :		1.5 15	1						
CROL	COMPOUND	1							ŀ			! '	. ,	ここと 機関	7 72.	The state of the state of		111	
10	Hexachlorobutadiene .	1	7	Ï	7==	<u>'</u>			T	<u></u>		<u> </u>		l		#	 		
10	4-Chloro-3-methylphenol				1	I							 			 	 		·
10	2-Hethylnaphthalene		1—							· 					-	 			-{
10	Hexachlorocyclopentadiene		1	1	1									ļ	 	 			-
10	2,4,6-Trichlorophenol		1	i	1	1 .				********				ing di≱t	1	120,41419	-	中華開始	1
25	2,4,5-Trichlorophenol					1							 	14-1-14	-	112	1	A Marie Sec	
10	2-Chloronaphthalene	1								·			 		-			- Translette	
25	2-Nitroaniline								11		1					<u> </u>			-
10	Dimethylphthalate								1										-
10	Acenaphithyl ene	<u> </u>											1-			<u> </u>			· -
10	2,6-Dinitrotoluene												1			<u> </u>			· -
25	3-Nitroaniline		R		R		R						-	<u> </u>	<u> </u>	:	1		
10	Acenaphthene																-		
25	2,4-Dinitrophenol																		· -
25	4-Nitrophenol			<u>. </u>										4.16.00	12 af	page her		1. 维持機能強化	╂╾╢
10	Dibenzofuran									· .				i de me e	16.5			THE PARTY	
10	2,4-Dinitrotoluene									•	1				_				1-1
10	Diethylphthalate															 			╂╾┦
10	4-Chlorophenyl-phenylether											· ·							1
10	fluorene	J											1			ļ ———			1-
25	4-Nitroaniline											<u> </u>					7		<u>-</u>
25	4,6-Dinitro-2-methylphenol													1.44				86	
		1												1897 438	1.45	84 g.S		1117	
[]		<u> </u>				H											13		1

SUMMARY

Limit

FORM:

SAMPLES

WATER

#: \8347 Sampling

Required

Quantitation

Name: HOFFMAN LANDFILL

(µg/L)

To calculate CKYSH CK 42.6 Sample No. 1.0 1.0 1.0 Dilution Factor SU13% S144 Location 171 CRQL COMPOUND 10 N-Nitrosodiphenylamine 计选择模 4-Bromophenyl-phenylether 10 *Hexachlorobenzene 25 *Pentachlorophenol 10 Phenanthrene 10 Anthracene 10 Carbazole 10 Di-n-butylphthalate J-4: 11.50中海43 10 fluoranthéne 111 10 17. Pyrene 10 10 Butylbenzylphthalate 10 3,3'-Dichlorobenzidine บร TU UJ 10 Benzo(a)anthracene 10 Chrysene 10 B bis(2-Ethylhexyl)phthalate B B 10 Di-n-octylphthalate 10 Benzo(b) fluoranthene 10 Benzo(k) fluroanthene evieta 44.5 nx 社会性 ·维拉 -10 Benzo(a)pyrene Indeno(1,2,3-cd)pyrene 10 10 Dibenz(a,h)anthracene Benzo(g,h,i)perylene

DATA SUMMARY FORM: B N A

ite Name: HOFFMAN LANDFILL

#: 18347 sampling

SOIL SAMPLES

٠,

62392

(µg/Kg)

To calculate sample quantitation limit:

(CRQL * Dilution factor) / ((1 - % moisture)/100)

ſF										· · · · · · · · · · · · · · · · · · ·	1.25
		Sample No.		CKY24	CKY30				CKY34	CKY35	CKY36
	• •	Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0.	1.0	1.0	1.0
		% Hoisture	19	13-	40	23	18		13	3	10
} .		Location	SFDI	SFD2	SFD3	SFD4	Sı	<u>S2</u>	53	54	11 SS
1	•					ł.			Fixed Dup.		
1									of CKY38		
1 .	CRQL	COMPENIND				<u> </u>			+		
=	;		<u> </u>	<u> </u>	·	<u> </u>	 	 			
-	330	Phenol		<u>:</u>	 	<u> </u> <u> </u>	I	 	TU		
-	330	bis(2-Chloroethyt)ether 2-Chlorophenol			·	 - 	 	 		-	
-			- -	 -	 	 -	<u> </u>		<u>:</u> -		
-	330	1,3-Dichtorobenzene	} - ↓ -	 -		 -	 	 			
-	330	1,4-Dichtorobenzene	∦ <u> </u> 	 	 	 -	 		ात इस्रोहरू १८ ४		विद्यास्त्रकार्यः -, 📑
-	330		 	 		II	 	 	- 36: 1		Augusta da 📑
-	II	2 Hethylphenol	- -	 	 				I		
-	330 330	2,21-Oxybis(1-chloropropane) 4-Hethylphenol	II	 	N3		<u></u>	<u></u>			
1-			 	 	62 5	 		 	- <u> </u> - -		
-	330	N-Nitroso-di-n-propylamine	[]- -			 - -					
-	330 330	Hexachloroethane	 	 	<u> </u>	 					
-		Nitrobenzene		<u> </u>		-					१९५१ ५९५३ - हिंद
1	330	Isophorone	 	_					2 100		HERING AND THE
1.	330	2-Ni trophenol			<u> </u>	<u> </u>					
1.	330	2,4-Dinethylphenol	<u> </u>								
1	330	bis(2-Chloroethoxy)methane		<u> </u>		<u> </u>	<u> </u>				
	330	2,4-Dichlorophenol						:			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	330	1,2,4-Trichlorobenzene									
-	330	Naphthalene			- 85						
1	330	4-Chloroaniline	V			V			V		1
1									er basit it is		- Q. P.
-					1 .		<u> </u>		en and in the	Marianet Sava	INTERNAL DE
1		• .				1					
-						1		- - 			
IL-			/\ 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	41 	*	/\	1		

CROL = Contract Required Quantitation Limit

SEE NARRATIVE

FOR CODE DEFINITIONS 1

DATA SUMMARY FORM:

Site Name: HOFFMAN LANDFILL

SOIL SAMPLES

(µg/Kg)

#: \8347 Sampling Date(5): 6/23/92

	Sample No.	CKYZ	8	CISY	29	CKY.	30	CKY	31	CKY	32	CKY	33	CKY	34	CKY	3	CK73	7
11	Dilution Factor	1.0		. 1.0		1.0		1. 2		10		1.0		1.0		1.0		1.0	-
U	X Hoisture	19	[13		40	0	25	3	18		11	١,	13		3		10	一
}	Location	SPDI		SFDO		SEDE	3	SFD	+	Sı		52		53		42		22	
CRQL	CUMPOLIND									·				etck etck	ΨP.				
330	Hexach i or obut ad i ene	<u> </u>	7.3			<u> </u>			177	<u> </u>		 		ļ_ 	10.000		l. lær		
330	4-Chloro-3-methylphenol	11	~~		 -		l —	·	VI		-				VĮ.	·	坏		功
330	2-Methylnaphthalene		- -		_	ļ	 		+	ļ 		ļ				<u> </u>	- -	 	Ш
330	Hexachlorocyclopentadiene	<u> </u> -	┼╢	- 92	I	l		l	<u>-</u> ;		<u> </u>	 	<u> </u>						141
330	2,4,6-Trichlorophenol	- 	┰			<u> </u>					 	l					$\sqcup \sqcup$	ļ	Ш
800	2,4,5-Trichtorophenot	 -		- 					- -	ļ 		 _			- -		- -		141
330	2-Chloronaphthalene	H	╌┼╌╢	 					- -		ļ		_	11.5					Ш
800	2-Nitroaniline	- -	╁╌╢					ļ	-		 		:	17 (Mag			1	PROPERTY SERVICE	Ш
330	Dimethylphthalate	· -	╌╢					<u> </u>			<u> </u>				-		- -	 	141
330	Acenaphthylene	<u> </u>	╅					- -	┟┼╌╽		 			<u> </u>	$\left - \right $	·	- -		╁╂╢
330	2,6-Dinitrotoluene		+					<u> </u>							┞┼┤	ļ	┨╼╂╼┤		144
. 800	3-Nitroaniline		 	; 					- -	·i					- -		╂┼		+1
330	Acenaphthene		1			ļ					 				- -	 	╂╋		+
800	2,4-Dinitrophenol		 							· 	 					44.70	+-	district to	+
800	4-Nitrophenol		1	:					- -					- 14 mg			╂╂╾	SEPRICE TO	H
330	Dibenzofuran		1					l			 		-				╂┪	100 23 20 27	
330	2,4-Dinitrotaluene		T					·									+		1
330	Diethylphthalate		71																1+1
330	4-Chlorophenyl-phenylether																		H
330	fluorene		7-1	····														<u> </u>	+
800	4-Nitroaniline				·		UJ				UJ	ī. ————————————————————————————————————	UJ					ORIGIN (Red)	
800	4,6-Dinitro-Zmethylphenol		V						V						マ	 	V	7	Y
														,	-			Existence & Sal	÷bi
			`					[T	-			1.32		7	gipting giat in the	

= Contract

Quantitation Required

Limit

SEE NARRATIVE

FOR CODE DEFINITIONS

revised 07/90 DATA SUMMARY FORM:

Name: HOFFMAN LANDFILL

SOIL SAMPLES ' (μg/Kg)

#: 18347 Sampling Date(6): 6/23/92

To calculate sample : quantitation 🤼 (CRQL * Dilution factor) / ((100 - X moisture)/100)

·								· 		· • .	,						. * . *	i	: "
	Sample No.	CKY	28	CKY	29	CKY	30	CK431		KY3	2_	CKY3	3	CKY	34	CKY	3	CKY	
	Dilution Factor	1.0		1.0	· .	1.0		1.0		1.0	· ,*	1.0	-	1.0	4	1.0		1.0	
·	X Hoisture	19		<u> </u>		·		23	_	18				13	-	7		10	_
	Location	SFDI		SED.	2	SED	3	SFD4		12		2.5	,	23		Su		-22	-1
,	,	H			•				H					Field D	<u>.</u>]	•		-1
						٠,			-					1 100	4.				-
CRQL	COMPOUND									,				Frold D of Ck	Y38	1	. 1		
330	N-Nitrosodiphenylamine		VJ					U	-ii	T	_				VJ		קט		Va
330	4-Bromophenyl-phenylether	· .							-		-			· · ·	1	 			71
330	Hexachlorobenzene								-			l			一	# 	1		$+ \parallel$
800	Pentachlorophenol										-					J	A		+1
330	Phenanthrene			130	I	56	II					-			\top	47	7		+1
330	Anthracene	ļ							- H						1	<u> </u>	US.		+1
330	Carbazole	II													1	<u> </u>	YY		+ 1
330	Di-n-butylphthalate	<u> </u>							-11						寸	ļ			H
330	Fluoranthene		Ш	120	ત				- -			11		39	-	 	Н		+ 1
330	Pyrene			\2.0 85	4				-11	 -	_				45			Attorisms.	+1
330	Butylbenzylphthalate			46	B	240	B		-	180 [2	160	R		۳			The second	╂╢
330	3,31-Dichtorobenzidine					1									-			1/21 12 1 1 1 1	$+ \parallel$
330	Benzo(a)anthracene	1		110	7				-		_						1-1-1		$+ \parallel$
330	Chrysene				H H H H				-		-	<u> </u>			+				╁╢
330	bis(2-Ethylhexyl)phthalate			120	B				-		_	38	-		-	 			$+ \parallel$
330	Di-n-octylphthalate								-		_	<u>->×</u>	-2-		-		╟┼┤		+#
330	Benzo(b) fluoranthene			250	五				-		_						┟╅┪		+
330	Benzo(k)fluoranthene			250	7			-			_			10.00	┝╌╂╌┆			215000	+
330	Benzo(a)pyrene			120	नीत्रत	1		 - 	-					3 41 1	-		┝┼┼	OHINAEW:	+
330	Indeno(1,2,3-cd)pyrene			120	7			-	-	-								al West	+
330	Dibenz(a,h)anthracene			- 			_	-	╢┈	 -	-			**2			┝╅╌╢	, 43 °	+.
330	Benzo(g,h)perylene		し		<u></u>		_	4	⁴∥		ᆔ			1 7 7 1	4		Φ	SHIPP REAL	╁
			┤┻┤				-		-∦	 -		 			Y		Y	The Co	▼.
-		 							-	 -	┉	 						ed G	-
<u></u>	والمتناف المتناز والمراب المتناف والمتناف والمتناز المتناز	<u> </u>	<u>. I</u>	<u> </u>	اجسيا	<u> </u>	I	l I				L l		L		li l	1 1	A	Υ.

= Contract

Required

Limit

FOR CODE DEFINITIONS

DATA SUMMARY

FORM: B

1

Site Name: HOFFMAN LANDETLL

SOIL SAMPLES

(µg/Kg)

Case #: 18347 Sampling Date: 6/23/92

To calculate sample quantitation limit:
(CRQL * Dilution Factor) / ((1 - % moisture)/100)

	Sample No.	CK43	7-	CKYZ	18			1		<u> </u>				<u> </u>				1	عند
	Dilution Factor	1.0	<u> </u>	1.0.														 	
	% Hoisture	8	.—	12														 	_
•	Location	S6		57														in a late of the second	
				Field [)պր.			-	··.		·· - · · ·			1. 计智慧语	а.,.		.;	ारक संस्थित	_
				Field I of Cky					-]							1	•	1 3.00	(- 1
		l		ot ck	134			<u> </u>				ľ				i		, .	
CROL	COMPOSIND	<u> </u>				<u></u>						<u></u>	<u>.</u>			ļ		<u> </u>	
330	Phenol				UJ		. ,			l									Τ
330	bis(2-Chloroethyl)ether		·.			·	<u> </u>												
330	2-Chlorophenol									<u> </u>		<u> </u>		19 1911	. :		<u> </u>		Π
330	1,3-Dichlorobenzene			<u> </u>			<u> </u>							5.1号94亿			13.	सम्बद्धिक विकास	\prod
330	1,4-Dichlorobenzene				- -	·				,								·	Γ
	1,2-Dichtorobenzene		<u> </u>		$ \bot $		<u> </u>			·	<u> </u>					<u> </u>			
330	2-Methylphenol			<u>-i</u> ,			<u> </u>			İ		 		4.1				design per	
330 330	2,2'-Oxybis(1-chloropropane)		江		11_	<u> </u>	<u> </u>					<u> </u>							
	4-Methylphenol						 				<u> </u>			· · ·					
. 330	N-Nigroso-di-n-propylamine										<u> </u>			<u>, 1, 1</u>					
330 330	Hexachtoroethane Nitrobenzene				14-1						l		<u> </u>					<u> </u>	L
					_		l	` 			ļ	 							
330	Isophorone	 				·		<u></u>			ļ	 	ļ					A4	
330	2-Nitrophenol	III	<u> </u>							- 	1	 							L
	2,4-Dimethylphenol		:	<u> </u>		ļ	_	·			<u> </u>		<u> </u>						
330	bis(2-Chloroethoxy)methane			<u> </u>	- 		ļ	ļ			ļ	 							1_
330	2,4-Dichlorophenol			<u> </u>			 				ļ	ļ				II		<u> </u>	
	1,2,4-Trichlorobenzene		 -						.	<u> </u>	<u> </u>								L
330	Naph tha lene				4		<u> </u>		.[]					***			عا	State :	
330	4-Chtoroaniline				<u> </u>		<u> </u>		.		<u> </u>			: Patte	160 17	to fosta			1 1
_		 			<u> </u>								<u> </u>	ា ទីការ៉ាំម៉ែន		\$ 75	-	1000年後	1
-												<u></u>			<u></u>	<u> </u>	1	<u> </u>	I
_				·							 	<u> </u>			<u> </u>				
- 11		11 l		l		II	I	11	1	j .	I	Ħ	l '	11		1		H	1

DATA SUMMARY FORM:

Name: HOFFMAN LANDFILL

SOIL SAMPLES (μġ/Kg)

#: 18347 Sampling

Date(s): 6 23 92

* Dilution Factor) / ((100 - X moisture)/100)

	r a						 						1.	+ ,1	19 1 f.t.	+ 1 ¹		7790
Sample No.		37	CKY:			<u> </u>			<u> </u>		··							
Dilution Factor	1.0		1:0		ļ													. •
X Hoisture	- 8		13			 -		<u></u>			ļ							
Location	S6				<u> </u>		- 		ļ									
		Ī	Field of Ck	Dup.										· .				
·		l	1500								ŀ						4	ĺ
C004			3-06	434			[<u> </u> ·		,:					l
CRQL COMPOUND	<u> </u>		<u> </u>				<u></u>		<u> </u>		<u></u>				<u></u>		1. 引起 2.	<u></u>
330 Hexachlorobutadiene				V)										1 0			n mega, est	M
330 4-Chloro-3-methylphenol																		\top
330 2-Methylnaphthalene		l		<u> </u>										1				1-1
330 Hexachlorocyclopentadiene	<u> </u>	l				<u> </u>								1		1		1-1
330 2,4,6-Trichtorophenol	<u> </u>							۳.						<u> </u>	, , , , , , , , , , , , , , , , , , ,			1-1
800 2,4,5-Trichtorophenot	<u> </u>												· · · · · · · · · · · · · · · · · · ·					
330 2-Chloronaphthalene										,				<u> </u>			a gravitació s	1-1
800 2-Nitroaniline										-	7		$H_{\tilde{\chi}}$				1000840	
330 Dimethylphthalate				T								-		 				1-1
330 Acenaphyhylene				T				_			<u> </u>					-		╂━╢
330 2,6-Dinitrotoluene														 -				-
800 3-Nitroaniline										_							\$1.69678 55	╂━╂
330 Acenaphthene														 	ļ	 		╂━┨
800 2,4-Dinitrophenol			•											i		 		┨╼┨
800 4-Nitrophenol	1			1						_				 			 	╁╼╂
330 Dibenzofuran	I			+	I	<u> </u>		—						 		 	 	╂╼┨
330 2,4-Dinitrotoluene				+	· ·								7 Sel 844	 			J	╁╼┟
330 Diethylphthalate	 			 -					- 4				(84. 6 5)	1.0	age of the state of	 - 	i Barily Literatura	
330 4-Chlorophenyl-phenylether	II			-	 					<u> </u>	 	 	279 8 24	21.2	15 Th 1 Th	 	1770年中午	╁╣
330 fluorene	<u> </u>		<u> </u>	 -					l		<u></u>			 				┦╌┦
800 4-Nitroaniline	 	Ü		-							 				 		 	1-1
800 4,6-Dinitro-Zmethylphenol	 	77	 	4			[i				<u> </u>		ļ	 	ļ		O.RIG Re	.[]
4,0-Dillitro-zaetnytphenot	 		 	-	l 	 			<u> </u>		 				ļ		85	\sqcup
 	 					 -			-		 	ļ		 	ļ		35	
l	<u> </u>		L		<u>L </u>	<u></u>	l		ا ــــــــــــــــــــــــــــــــــــ		<u> </u>			<u>l:</u>	<u> </u>	<u> </u>	F	

Required

Quantitation

Limit

SEE NARRATIVE FOR CODE DEFINITIONS

DATA SUMMARY

FORM:

BNAS

3

ite Name: HOFFMAN LANDFILL

SOIL SAMPLES

(µg/Kg)

ase #: 18347 Sampling Date(e):

6/23/92

To calculate sample quantitation limit: (CRQL * Dilution Factor) / ((100 - % moisture)/100)

1	Sample No.	CKY	37	CKY	2 &	Y					-	Ý		<u> </u>	٠. ا			<u> </u>	—
	Dilution Factor	1.0.		1:0		l		ļ	·			 						ा सहीते संस्थान कर	-1
1 .	X Hoisture	8	•	<u> </u>	2							∦		1 1 447	-			CHERON CO.	
	Location	56		57		· · · · · · · · · · · · · · · · · · ·				,		I		 				1. 由海南州(本美):	
		1						 				 		16.00	A DESCRIPTION				
1	·			Field of CK	wp		:	1.								Fig. 12 Sept.			
. '		l	' '	of CK	134											0.49			**
CRQL	COMPOUND	<u> </u>		7		<u> </u>	· · · · ·			` .] .				11.75	1
330	N-Nitrosodiphenylamine				Vo		1	*			T - "	Ï	Ī					T	Ħ
330	4-Bromophenyl-phenylether	, , , , , ,							3		·	1		<u> </u>	• .				
330	Hexachlorobenzene /				\prod									l					
800	Pentachlorophenol				П						i				-;			5月第18年	1
330	Phenanthrene				П									 	4.5			11. žev. 11.	
330	Anthracene				IT							1							
330	Carbazole		; .		IT							1		· ·				,	
330	Di-n-butylphthalate	1	-	1	V		1	','			 	 	 	l					
330	fluoranthene			61	J	l						 	1						
330	Pyrene ,				工		·	·					i						
330	Butylbenzylphthalate	130	B		IT		1-				<u> </u>	 				· · · · · · · · · · · · · · · · · · ·			
330	3,31-Dichlorobenzidine			1.	IT						1	I .	1						<u> </u>
330	Benzo(a)anthracene	7 1.	<u> </u>							· · ·		1							
330	Chrysene											1	1	· .					
330	bis(2-Ethylhexyl)phthalate						1	I			1		1-		``				
330	Di-n-octylphthalate			_	V		1						1						
330	Benzo(b) fluoranthene			61	7	·					1	1	1						
330	Benzo(k)fluoranthene			61	5						1	1							
330	Benzo(a)pyrene				が行						1								
330	Indeno(1,2,3-cd)pyrere			1			1												<u> </u>
330	Dibenz(a,h)anthracene				一		1	l			\vdash	 	 	1 A BA		 	 	O rdinal	$-\parallel$
330	Benzo(g,h)perylene			 	マ	 	1-				1-		 	1.191				2.35.777.20	
				 	1		1	ļ			1	#	 	l	 	 	쩅	R. A. THE R. L. S.	
				1			1	I			<u> </u>	II	1-		 			95.5 25.0 25.0 25.0	\dashv
		<u> </u>		<u> </u>	4	<u> </u>	-!	<u> </u>	*	\- 						والمستحدث والمستحدث	ليسيط	<u> </u>	

WRLE 3

DATA SUMMARY.

FORM: INOROANICS

WATER EAHPLES
(pg/L)

6/23/92

4Due to dilution, sample quantitation limit is affected.

See dilution table for specifics.

·		-					•										Dee ULL	ULK	DE CEDTE	TO	r. shecri	TYC
	Sample No.		ACJYO		MCJYO		MCJY0		MCJY10		MCJY1		MCJY12	2	MCJY13	-	MCJY15	, 1	MCJY16		MCJY17	_
			1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0	_	1.0	-1
	Location		BLK-	1	GW-1		! GW-2		GW-3		GW-4		GW-5		GW-6		SW-1		SW-2	— 	SW-3	-
			fiel	d l	•	}	Dup1tca	ite					Duplic	ate	·····		: 1					-∥.
ાઇદ	AHALTIE		b1an	k		•	E MCJY1	.2					MCJY		· ·		·					
200	Alimina	i ==	-		F 12 13		<u> </u>	·	F-12.4			 ¦			J					السا		
60	Ant Imony		····		[12.1]		[146]		[182]				49.8		[197]		734		206			
Tiō	Arsenic	l							F													_
žõñ 🖁	Bor Iten				[43.6]		1277		[7.0]				P-133-9		[1.4]			_	5 11			
-5	Beryllim				70,0		137	-5	206		29.7		133		238		53.2		17.3		37.7	_
- 5	Cadalua	 				—	L 031	8	2.7				[0,29]	B					<u>[</u>	B		_
ōōō	Calcium	7:-	9,7	В	24100		70400		83300		130044				=							_
iō	*Chromium	_			27100		JUTUU			· ··	139000		69800		21000		22100		117000		11400	_
. 3 0	Cobalt	_							L 2.8		[2.3]						P					_
25	Copper	_					49.7		271								[4.2]		37.8			
iōō	Iron:	r	5.6]	B	77.6		1030		172000		500		<u> 45,8</u>		[8.5]		[3.9]					
3	*lend	-		1-12-	77.0		6.0		35.3		1530		931		9300		740		5800		3140	
000	Hognes lum				6220		17300		19400		7.5		5,8		1.3		[1.5]				"—— <u> </u>	_
-i5	Manganese	 					78.1				22100		17000		11300		5980	_	44600		4650]	_
<u>0.</u> 2	Herciny	-			· · · · · · · ·		7.0//		<u> </u>		31.6		66.8	_	490		126		3020		429	<u> _ </u>
40	*Nickel								[13.4]						<u> </u>		P				l	1-1
000	Potessium	1			611		[2460]		1070		[1440]		2320		71147			 	78,7			<u> - </u>
5	Selenium .					-			F 16.16.1	W.L	L_1170_1		- 4340-T		[1740]		[1070]	—	[1870]		4300]	
10	Silver									CKP.								<u> </u>	ļ			
000	Sodium				3170]	-	[3990]		13100	·	[1640]		[4140]		[4080]		5590		12100		1040	
10	Thell tum			ul		M		uL		ML	F10107	ML		ul	17907		5570	 	N		1960	<u> - </u>
50	Variadicm					عند		200			·	<u>me</u>	 	1		MI		M.	 	M		щ
50	Zinc		4,0]	B	8.8	B	60.5		561		25.4		56.3		30,8		34.4	 	J		C 7.7	
10	*Cyanide														- 348		3.7.7	 	32.0	 	[7.5]	U
#						_				_									 			-
								_									 	 			 	
							<u> </u>						ļ			<u> </u>			<u> </u>		 	1-1
M. ·	Contract no						 		' ''' 		/} <i></i>	حسبا	Leronauma.			ليبيا	<u> </u>	1	JL	1	ll	

Hoffman Landfill

Sampling Date(s):

6/23/92

Hoffman Landfill

18347 Bampling Date(s):

HATER SAMPLES (µg/1.)

MCJY18 1.0 SW-4	MÇJY 1.0 LT-	0	MCJY3 1.0 BLK- filter		MCJY:		MCJY35	;		 -		<u> </u>		·	-	- i i		==
			BLK-				1.0									∦-	·	
378			filter		GW-6		GW-DU	JP										
378			MCJY fld bl	07	filtere MCJYI DUP MCJ	13	filtere MCJY	2d.	1					· ·				_
	3530	-		-	————	_	[16,7]				}							-[-
L 49,i	78.4		F 157		222		222					_						- -
		1	1							_								- -
21800	16400		[3/9]		20800		10200					_						1
3.1	8,2			_			3.2			_								-
195	12000		[[2.1]	B	8170	丁	8150	J					:					-
5950	2490		[47.6]	B	11200		10900				-	_						+
		1_	1.3	I	484	I	476	I										- -
1090	2520	1		_	[1690]		[1600]											-
										_			1					-
		ur	<u> </u>		[3960]	_	[3880]	_									_	-
25.5	B 68.0		29.3		35,2	B	[18.1]	B										-
				Q		9		Ø										-
				_		_			·	_								_
	2.1] . [95 . 0.40 . 5950 . 77.9 . 11.9] . 1090 . 44	21800 6400 5.3 2.1 8.2 195 12000 10.7 5750 2490 327 11.9 9.9 1090 2520 5040 23330 41.	1800 78,6	21800	Y1.	1800 6400 319] 20800 5.3 20800 5.3 20800	1800 (6400 319] 20800 5.3 15.2 15.2 12000 10.7 10.7 147.6 B 11200 10.7 10.9	1800	1800	[49.1] [78.6] [1.5] 222 222 222 222 222 222 222 222 222 2	195	Yni	Y11	1800	1800	1860	18.6	11.00 16.00 16.00 13.1 20800 20200

Attachment II

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY **REGION III**

ORIGINAL (Red)

CENTRAL REGIONAL LABORATORY 839 BESTGATE ROAD ANNAPOLIS, MARYLAND 21401-3013 (410) 573 - 2799

DATE

: October 1, 1992

SUBJECT : Region III Data QA Review

FROM

: Cynthia E. Caporale C. Caporalle
Region TTT

Region III ESAT RPO (3ES31)

TO

: Michael Taurino

Regional Project Manager (3HW73)

Attached is the inorganic data validation report for the Hoffman Landfill Site (Case 18347) completed by the Region III Environmental Services Assistance Team (ESAT) contractor under the direction of Region III ESD.

If you have any questions regarding this review, please call me.

Attachment

Jennifer Woods, MD DOE Edward Kantor, EMSL-LV

Regional CLP TPO: Stevie Wilding

Region: III Lab Code: ITPA

TID File: 03920420 Task 1516

Environmental Services Assistance Teams Region 3

1419 Forest Drive, Suite 104 Annapolis, Maryland 21403

DATE:

SEPTEMBER 23, 1992

SUBJECT:

INORGANIC DATA VALIDATION, CASE 18347

SITE: HOFFMAN LANDFILL

SENIOR OVERSIGHT CHEMIST

FROM:

DAN Q BENEDIKT & P3

MAHBOOBEH MECANIC

SENIOR OVERSIGHT CHEMIST

TO:

CYNTHIA E. CAPORALE

ESAT REGIONAL PROJECT OFFICER

THROUGH:

DALE S. BOSHART

ESAT TEAM MANAGER

OVERVIEW

The set of samples for Case 18347 contained twelve (12) unfiltered aqueous samples and eleven (11) solid samples, which were analyzed through the Contract Laboratory Program (CLP) Routine Analytical Services (RAS) for total metals and cyanide. Three (3) field-filtered aqueous samples were analyzed through the CLP RAS for dissolved metals. The sample set included both a filtered and non-filtered field blank, and field duplicate pairs for the aqueous, filtered aqueous and solid matrices.

The 35.3 μ g/L concentration for the lead (Pb) analyte in aqueous sample MCJY10 exceeded the Chemical Health Advisory Level (EPA Action Level) of 20.0 μ g/L.

SUMMARY

The laboratory divided the samples into two (2) Sample Delivery Groups (SDGs), and performed the analyses according to Statement of Work (SOW) ILM02.1. All analytes were successfully analyzed in all samples with the exception of antimony (Sb) in the solid matrix. Issues relating to data usability are discussed in order of importance in the following paragraphs.

TABLE 1B

CODES USED IN COMMENTS COLUMN

- A = The matrix spike recovery for this analyte was extremely low. The quantitation limits are biased extremely low and may by unusable.
- B = The continuing calibration blank had a result >IDL (the result is in parentheses) and the results in the listed samples were <5x the blank value. The reported results may be biased high.
- C = The preparation blank had a result >IDL (the result is in parentheses) and the results in the listed samples were <5x the blank value. The reported results may be biased high.</p>
- D = The RPD for the laboratory duplicate results exceeded the control limit (the RPD is in parentheses). The results may be estimated.
- E = The analytical spike recovery was low (the range of recoveries is in parentheses). The reported result or quantitation limit may be biased low.
- F = The matrix spike recovery was low (the % recovery is in parentheses). The reported quantitation limits may be biased low.
- G = The field blank had a result >IDL (the result is in parentheses) and the results in the listed samples were <5x the blank value. The reported results may be biased high.
- H = The percent difference in the ICP serial dilution analysis exceeded the control limit (the percent difference is in parentheses). The reported results may be estimated.

TABLE 2

GLOSSARY OF DATA QUALIFIER CODES (INORGANIC)

<u>CODES RELATED TO IDENTIFICATION</u> (confidence concerning presence or absence of analytes):

U = Not detected. The associated number indicates approximate sample concentration necessary to be

detected.

(NO CODE) = Confirmed identification.

B = Not detected substantially above the level reported in laboratory or

field blanks.

R = Unreliable result. Analyte may or may not be present in the sample.

Supporting data necessary to

confirm result.

<u>CODES RELATED TO QUANTITATION</u>
(can be used for both positive results and sample quantitation limits):

J = Analyte Present. Reported value may not be accurate or precise.

K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.

L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.

[] = Analyte present. As values approach the IDL the quantitation may not be accurate.

UJ = Not detected, quantitation limit may be inaccurate or imprecise.

UL = Not detected, quantitation limit is probably higher.

OTHER CODES

= No analytical result.

agreed within the laboratory duplicate control limits of 35% RPD or ±2xCRDL. Control limits have not been established for field duplicate analyses and therefore no data have been qualified based on these duplicate results.

The data have been reviewed according to the National Functional Guidelines for Inorganic Data Validation, with modifications for use in Region 3.

INFORMATION REGARDING REPORT CONTENT

Table 1A is a summary of qualifiers added to the laboratory's results during evaluation.

ATTACHMENTS

TABLE 1A	SUMMARY OF QUALIFIERS ON DATA SUMMARY FORMS AFTER DATA VALIDATION
TABLE 1B	CODES USED IN COMMENTS COLUMN
TABLE 2	GLOSSARY OF DATA QUALIFIER CODES
TABLE 3	DATA SUMMARY FORMS
APPENDIX A	RESULTS REPORTED BY THE LABORATORY (FORM Is)

APPENDIX B TPO REPORT

APPENDIX C SUPPORT DOCUMENTATION

DB209A04.bsc

TABLE 1A

SUMMARY OF QUALIFIERS ON DATA SUMMARY AFTER DATA VALIDATION

ANALYTE		ECTED	NON- DETECTED RESULTS	BIAS	COMMENTS*
Sb	All solid samples		R I	EXTREMELY LOW	A (19.1%)
Be	NCJY09, MCJY12, MCJY16	В		HIGH	B (0.30 μg/L)
Ca	MCJY07 .	B .		HIGH	C (25.8 μg/L)
Fe	MCJY07	В		HIGH	C (9.7 μg/L)
	MCJY32	B		HIGH	C (9.7 μg/L) D (27.6%)
	MCJY33, MCJY35	J			D (27.6%)
Mg	MCJY32	B .		HIGH	C (20.4 µg/L)
Mn	MCJY32, MCJY33, MCJY35	J	•		D (27.4%)
Se	MCJY10, MCJY24-MCJY31	L.	UL	LOW	E (66.0%-84.0%)
T1	MCJY08-MCJY13, MCJY15- MCJY18		UL	LOW	E (60.5%-84.0%) F (71.2%)
	MCJY07, MCJY19		UL	LOW	F (71.2%)
2n	MCJY07, MCJY08, MCJY17, MCJY18	В	. 1. 1. 1. m. 1.	HIGH	C (5.4 µg/L)
	MCJY33, MCJY35	В		HIGH	G (29.3 μg/L)
•	All solid samples	J			H (11.5%)

^{*} See explanation of comments in Table 1B.

MAJOR PROBLEM

The recovery for the Sb analyte was very low (< 30%) in the solid matrix spike. Quantitation limits for this analyte may be biased extremely low, and have been qualified unusable, "R", on the Data Summary Form.

MINOR ISSUES

A number of analytes were detected in the laboratory continuing calibration blanks (CCBs), preparation blanks (PBs) or field blanks (FBs) at concentrations greater than (>) the Instrument Detection Limit (IDL). Results in samples that are less than (<) five times (5x) the levels detected in the blanks may be biased high, and have been qualified "B" on the Data Summary Forms. The following table lists the analytes affected by blank contamination and the type of blank used to qualify data.

ANALYTE	MATRIX AFFECTED	TYPE OF BLANK USED
Beryllium (Be)	AQ	ССВ
Calcium (Ca)	AQ	PB
Iron (Fe)	AQ, FILT.	PB
Magnesium (Mg)	FILT.	PB
Zinc (Zn)	AQ, FILT. FILT.	PB FB

(AQ = non-filtered aqueous, FILT. = filtered aqueous)

The laboratory duplicate results for the filtered aqueous matrix exceeded the control limit [±Contract Required Detection Limit(CRDL), 20% Relative Percent Difference (RPD)] for the Fe and manganese (Mn) analytes. Results for these analytes have been qualified estimated, "J", except where superseded by the previously mentioned "B" qualifier.

The serial dilution result for the solid matrix exceeded the control limit (10% Difference) for the Zn analyte. Results for this analyte have been qualified estimated, "J", on the Data Summary Form.

The analytical spike recovery for the selenium (Se) and/or thallium (Tl) analytes were low (<85%) in some samples. The result or quantitation limit associated with each of these recoveries has been qualified biased

Page 3 of 4

low, "L" or "UL", respectively on the Data Summary Forms.

The matrix spike recovery for the Tl analyte in the non-filtered aqueous matrix spike analysis was also low (<75%). Quantitation limits for this analyte in non-filtered samples may be biased low; those results which have not already been qualified "UL" based on the low analytical spike recoveries, have been qualified "UL" on the Data Summary Forms.

NOTES

The laboratory applied the "N" qualifier to the Tl analyte in filtered aqueous samples based on the Tl recovery in the non-filtered matrix spike. The Tl recovery was within control limits in the filtered matrix spike and therefore, they have not been qualified on the Data Summary Forms.

Similarly, the laboratory has applied the "*" qualifier to the Fe and Mn analytes in non-filtered aqueous samples based on the filtered duplicate analysis. The results for these analytes in the non-filtered duplicate analysis were within control limits and therefore they have not been qualified on the Data Summary Forms.

The laboratory has applied the "W" qualifier to the TI quantitation limits in samples MCJY25, MCJY27 and MCJY29-MCJY31 because the analytical spike recoveries associated with these analyses exceeded the 115% control limit. The results for these analyses, however, were < IDL and high recoveries do not impact detection capability. Therefore, the analytical spikes were not used to qualify data.

The laboratory has applied the "*" qualifier to the Al analyte in solid samples because the laboratory duplicate analysis for the Al analyte in that matrix exceeded the contractual control limits (±CRDL, 20% RPD). The laboratory duplicate results, however, did not exceed the usability limits (±2xCRDL, 35% RPD) established for solid samples in Region 3. Therefore, no data have been qualified based on these duplicate results.

Results for non-filtered field duplicate pair MCJY09/MCJY12 and filtered field duplicate pair MCJY33/MCJY35 agreed within the 20% RPD or ± CRDL control limits established for laboratory duplicate analyses, while the results for solid field duplicate pair MCJY27/MCJY31

Appendix A

Glossary of Data Qualifiers

<u>CODES RELATING TO IDENTIFICATION</u> (confidence concerning presence or absence of compounds)

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

NO CODE = Confirmed identification.

- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
- N = Tentative identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

CODES RELATED TO QUANTITATION (can be used for both positive results and sample quantitation limits):

- J = Analyte present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- UJ = Not detected, quantitation limit may be inaccurate
 or imprecise.
- UL = Not detected, quantitation limit is probably higher.

OTHER CODES

Q = No analytical result.

ND PCR 4

Site Name: HOFFMAN LANDFILL

SÖIL SAMPLES (µg/Kg)

Case #: 18347 Sampling Date(5): 62392

To calculate sample quantitation limit: (CRQL * Dilution factor) / ((100 - % moisture)/100)

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~													(101) /	((1		W015(ints)\100).	è
	Sample No.	CKY	28	CKY	·24	$\subseteq KY$	30	CKY	31	CIC	132	CKY	33	CKY	34	CKY	735	CKY	136
j.	Dilution Factor	1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0	
ł ·	X Hoisture	19		13-		40		23		18		- 11		13		3	_	10	
d	Location	SFDI		SED		SFD	3	SFDL	L	Si		52		\$7		42	-	55	
l .														المامنك	712				
A														Field! of Ck	T			1	1
A .				l										1 of ck	:438	1	-		}
CROL	COMPOUND					<u> </u>	·	l <u></u>		<u> </u>		l							
1.7	alpha-BHC	ļ										0.25	1			0.100	17		
1.7	beta-BHC					<u> </u>													
1.7	delta-BHC				<u>·</u>						<u>. </u>								
1. Z	gauna:BitC (Lindane)			0.079						0.25	7	0.16	5	0.13	1	0.41	7	0,37	13
1.7	Heptachlor	0.17	工	0.35	1	0.48	丁	0.25	五	0.13	I	0,065	7			0.050			
_1_Z	Aldrin		<u> </u>		<u> </u>							0.65	4	0.58	1				
1.7_	Heptachlor Epoxide				<u>`</u>					· .		0.18	1	A.30	5	0.10	3	200	17
1.7	Endosul fan I						<u> </u>			·		0.13	1	0.40		0.30	3		Ť.
3.3	Dieldrin			0.072					<u> </u>	0.20	2								
٦.3_	4.41-DDE	0.20	7	0.64	工	0.39	I	0.38	五					,				०१७	-
3.3	<u> Endrin</u>			0.47	I						-	0.075	5	0.59	7	0,27	15	12.0	
3.3	Endosul fan 11					·		·			:			0.31		0.22	3		1
1.3_				0.15	团		<u> </u>	0.51	7	,							-	<u> </u>	
3.3	Endosulfan Sulfate			-	<u> </u>	·						0.096	7					ļ ———	
3.3	✓ 4.4°-DDT		<u> </u>			<u> </u>	<u> </u>	علىف	3	0.16	7					-32		1.2	13
<u> _17_</u>	Methoxychlor			0.35	早			0.92	B		`	0,39	B	0.46	B	9.4	1	10,99	
3.3	✓ Endrin Ketone ✓	0.18	1	0.31	1	<u></u>				0.66	ન		·	015		-0147		0.13	
1_7_	alpha:Chlordane	<u>.</u>		0.36	<u>2</u> .							-		2.2.0		0.39			
1.7.	∨ ganna-Chlordane	<u> </u>		0.46	工		<u>. </u>	0.16	J	0.072	7	0.41	7	0.67		0.41	13	0,45	43
170	Toxaphene																		-
_33	Aroctor-1016																		
67	Aroclor-1221									1.2						1		 	1
33	Aroclor-1232																	 	1-
33	Aroclor:1242								<u> </u>						1		<u> </u>	 	†
33	Aroctor-1248			-	<u> </u>												1	180 R	+
33	Aroclor-1254	1					5. 1								 		1	8 3	1
33	Aroclor-1260																	2	
CROL	End (in Aldehole	N	Lin	,								4` :	SE	NARRATI				EFINITION	—

DATA SUMMARY FORM: PESTICIDES AND PCB

Site Name: HOFFMAN LANDFILL

SOIL SAMPLES

(µg/Kg)

Case #: 1834 + Sampling Date(s): (12352-

• and and a second seco

(,	•	·	····							(CRQL		To Dilution	cal cul Fac		ample ((10			n lim ture)/100)	it:
	Sample No.	CKY	37	CKY	38	l										<u> </u>		1	_
j	Dilution factor	1. C		1:0														 	-
	X Hoisture	56	· ·	12													•	 	
	Location .	5.6	<u> </u>	2.	<u> </u>						,					3.1		 	
			in.	Fields	7-42.			** ,*										 	
· .			, , , .	of che	* ****				·			H	•	ì	٠.		•	-	
5001			_	efck	734			,			•	ł				•	•	li .	
CROL	COMPOUND			il					·	<u></u>	 :			ļ				<u>l</u>	
-1-7-	alpha-BHC			 		ļ			· · ·		-	 	_						\prod
1.7	beta-BHC		 -		<u> </u>						-		_						_
1.7_	delta-BIIC		_									ļ	_					II	_ _
.1.2_	gauna:BBC_(Lindanc)	0.12	2		ويندن						-	ļ	_			·			.[_
1.7	<u>Heptachlor</u>		<u> </u>	0.094	7			·					-	. 4 6				<u></u>	
1-7_	Aldrin	·			1						.		_	<u> </u>	.			<u> </u>	
1.7_	Heptachlor_Epoxide	- -	<u> </u>	0.36	<u>3</u>						-		-					l	
1.7	Endosul fan 1			0.34	7				l l			·	_	ļ				II	
3.3	Dieldrin	ļi		<u> 6.33</u>	2.	l					-[-	ļ			.	 	_ _
3.3_	4.41-DDE			— <u> </u>					_		-		4				<u> </u>	 	
3.3	Endrin	ļi		0.56	7.			I			-		-		 	ļ	.		_ _
3.3.	Endosulfan II		 -					,			-				<u> </u>	·		 	_
3.3	4.4° ±000 Endosulfan Sulfate		·	1.3	I,	ļi		·			-		-		-		.	 	
3.3	4,41-DDT	 		ļ				ļ			·					ļ			
17			<u> </u>	<u> </u>							· -	ļ	-				- 	 	-
3.3	Hethaxychlar	0.12	7	0.04	<u> </u>			<u> </u>		ł			-		<u> </u>		·	 	-
H II		0114	7	८.५४						. 	-		-	<u> </u>			 	 	- -
1.2	alpha:Chlordinegauna-Chlordine			0.98 0.51	5	JI				ļ. 	-		-				-	 	-
170	Toxaphene			0,31	J		<u></u>			- 	-	l	-	: -				<u> </u>	-
33	Aroctor-1016							<u></u>			-	ļ	-				-	ļ	
67	Aroclor-1221							·			-	<u></u>	-		<u> </u>	ļ	 	 	-
33	Aroctor-1232	l						 			-		-[]	<u></u>	 		·	 -	- -
11		· · · · · · · · · · · · · · · · · · ·						l			-		-		 		- 	<u> </u>	- -
33 33	Aroctor-1242 Aroctor-1248							l		 -			-	l			┨──	£L	- -
33	Aroclor-1254					[]						 	-	 			1	OF IG	+
33	Aroclor-1260										1	 	1		 		┨╼┯┤	<u> 32</u>	+
13:3	Folia Ollabile							 			 		-					7	+
CROL *	Contract Required Quanti	tation	Lia	it —		,	• •	•			• 177	4	SE	NARRATI	VE "	' FOR CO	DE - D	EFINITIONS	ş [†]

Hoffman Landfill

18347

SOIL SAMPLES (mg/Kg)

6/23/92

+Due to dilution, sample quantitation limit is affected. See dilution table for specifics.

6.3											<u></u>						يبند		_		—"
	Sasple Ho.	MCJY21		MCJY22	2	MCJY23	, ,	HCJY24		MCJY25	,	MCJY26	<u>6</u>	NCJY27		MCJY28		MCJY29		MCJY30	_#:
D	ilution factor	1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0	_ :
	X Solids	66.3	1	61.8		. 70.0		78.8		8019		88.2		87.9		97.5		87.4		91.2	
	Location	SED-1		SED-2	2	SED-3	1	SED-4		S-1		S-2		S-3		S-4	` ` `	S-5		S-6	_
			-					-			-		-1	Duplica	te					·	
ال	ANALYTE	•		, ,						•	.		H	MCJY3	i				_:[
0	Aliminin	3750		3950		3660		4260.		8210		4270		9410		4670		7900		12000	
15	Ant Imony		R	<u>.</u>	R		R		R		R		R		R		R		R.	K	기 :
1	Areenle	5.2		10.6		2.3		3.6		7.9		3.3		4,5	·	3,4		3,8		3.6	_
10	Berlue	145		54,5		68.9		86.5		142		56,6		126		105		71.4		56.8	
1	Beryllium	L 140		1.6		0,93	\Box	1.1	·			0.99		1.3		1.2		0.84		0.94	_
	*Codnium							0.65	·	[0.42]					•						_
00	Colcium	10000		10400		874		1290		2640	`	1200	·	2290		2940		5610		[, 739]	_
1	*Chromium	10		332	,	9.0		12.2		12.0		8.9		13.8		10.9		9.6		14.6	
10	Cobelt	48.1		180		[/2.8]	_	54,1		19.3		14,6		17.4		22.1		[11.3]		13,1	
3	Copper	21.0		13.7		25.7		16.1		28.7		21.1		21.3		21,3		14.1		15.6	
30_	Iron .	47100		49700		25100		27900		33900		24000		35900		54700		21900	. • .	33800	
.6	*Lead	19.9		21.5	-	18.1		15.7		35,0		17.5		21.2		14.9		21.1	•	9,7	_ :
,00	Hagnes lun	582		[1140]		580		785]	-:-	[1030]	_	784]		[1030]		[764]		1330		1200	-1
. 3	Hongonese	2590		13500		160		1460		1170	•	311		819		781		620		316	
1.1	Hercury													0.19		•					
	Mickel	57.7		169		20.9	· ·	89.1		22,2		14.6		16.5		22.0		9,8		12.9	
700	Potassium	794		[632]		[1370]		[577]		1240		1240		1120		1130		[904]		[949]	_
	. Selenium	0.49	· ·	1.8		[0.41]		[C34]	L	[0.35]	L		ML	[0.30]	L	·	ML	[0.31]	L	U,30	
1	Silver				:																
500	Sodium	[83.0]		[101]		[61.7]		[44.4]	—	[119]		[463]	l	[52.0]		[80.5]		[174]		L 39.1	
	Thellium																F-				
10	Venedium	14,7		[13.4]	•	18.4		[11.7]		18.3		11.2		21.0	•	15.0		17.6		240	
<u> </u>	line	140	T	119	I	76.5	J	188	F	78,0	T	79.9	J	110	F	130	T		T		7
Ī	*Cyanide				<u> </u>		<u> </u>	I	<u> </u>	_				[0.45	I —	[0.23]					
	<u> </u>	1																			

DL - Contract Required Detection Limit

*Action Level Exists

SEE HARRATIVE FOR CODE DEFINE

Hoffman Landfill

SOIL BAHPLES (mg/Kg)

					•				•				•		Ħ	oo dllu	tlon	table	for	pocifi	C a
loopl & Ho.	MCJY:	31	***************************************		 	wwin	·	1 a can		enimia um		***************************************					-		-		==
Bilution fector	1.0											·									
ebilos X	88.				I										[·			 '-
, Location	S-7	7									• • • • •] 			
•	Duplic				1																
DE ANALYTE	MCJY	27								1						. :			·		
TO THE REAL PROPERTY OF THE PARTY OF THE PAR	7390			-		-	¦¦		- :		1 2277	- 		******	·				, -¦		i==
12 Antimony		R				-												 ,	<u> </u>		-
Aroenle	4,4			1-						<u> </u>								ļ 			 –
16 Barlin	108			-		-					l										-
Torry triin	[0.83			-	I	-										ļ		<u> </u>			
Cochilin	1	1	I	-	 						[]					 			<u> </u>
60 Calelia	2430			·	 								[<u></u> -								 _
2 Chronlin	9.3			·	<u> </u>																
10 Cobalt .				-	<u> </u>	_										·	ł			•	
3 Copper	12.1			.	<u> </u>	_	.	·		l					,	:		•			_
1 lian	16.1			.	<u> </u>	<u>. </u>															_
	21000					_															-
	36.0			1																	i —
00 Hogneston	[832]			1-	H	_											 				-
J Hangarese	691			-	 	•			•						<u></u> .				II		-
Hereury	0.16			-	H			• •••					<u> </u>								 _
Nickel	.11.3				<u> </u>	-		****	•	• • • • • • • • • • • • • • • • • • • •									-		-
18 Folaceline	866]			_			•	• • • • •		**********						·	-				-
1 Telenlin	. 0.24	L				_			•								·		-		-
8 Solling						-				,		<u>-</u>					·	 			_
	49.2				7.	-		***************************************										}	_		_
I That I lim						-		• . •				·	 		_		.	I			l_
10 Vanadim	16.3			-			•	·		•••••••								I		· ·	l
1 Inc	79.6	5		-	ļ ——	-									<u></u>						-
1 Cymilde	0.71	-	·	-		-												ċ	 	**********	1
	·			-	ļ	-	!														-
	 			-[I			·-······		 											1-
	·	[]		-	/												1-				1-
Tallers Carrent Carre	1	i mir	<u> </u>	J.	<u> </u>		, A		ا ــِــ ا		l							·		I	-
DL - Contract Na	quired 1	note:	ction 1	.i n l t		· · · · · · · · · · · · · · · · · · ·	.jr	ا	l _{e tie} l 'Act	lan Lav				. .			<u></u>	*****			

DATA SUMMARY FORM:

HOFFMAN LANDFILL

SOIL SAMPLES (µg/Kg)

#: \8347 Sampling

Date(s):

To calculate sample quantitation limit: (CRQL * Dilution / ((100 - % moisture)/100) factor)

<u></u>				 -			~													1.1	
1		Sample No.	CKY3	<u>.</u>	CKY	38			_ [_									γ			
	,	Dilution Fuctor	1.0.		1.0				_ _						1 -	41 444 17		7	Superior	संकृत विभाग	h 5/\$
		X Hoisture	8		12				-∦-		:					्राक्ष्यकृतिस् <mark>वर्ते</mark>	1 pro et	. 100	achta	/ 精神主義化學	
-		Location				· _	ļ		_ _	·····	·					27,544				2	_
					Field D ofcky	աթ.						ł				,					
					Sec.	() ()	1		1							12.1			1	3	
	CROL	COMPOLIND			TCKY	34			1	•							• '	ł			11-
_			<u> </u>				<u> </u>		<u>. _</u>	·	<u></u>					l		H		<u> </u>	·
-	10	Chloromethane					 	_ _	_ _												Т
-1-	10 10	Bromomethane				<u> </u>	 	_ _	_ _											1	1
-		Vinyl Chloride				 	 	_ _	_ _	·	<u> </u>					ला र ताईति है। स	. , .			2	7
1	10	Chloroethane			<u> </u>		<u> </u>	_ _	_ _					1 12	7.64	金色製料 油	èi,iL	1444	An a	"城市村"等等	7
	10	Methylene Chloride	33	A C C	-38	13	 		_ _						1 1	365.69种的	2 1	ी सुझे । पुः	24 J.	14 th	1
_		Acetone	21	B	35	\mathbf{B}_{-}			_ _	· · · · · · · · · · · · · · · · · · ·			·	<u> </u>]_
-	10	Carbon Disulfide	<u> </u>				ļ _.	_ _	_ _	·	<u></u>										1
-	10	1,1-Dichloroethene					ļ	_ _	- _							, is a s				ं केल्प्रेड्ड्इ काल	7
-	Н	1,1-Dichloroethane	 			<u></u>			_ _	 -						1977	<u> </u>			1. 1.	1
-	10	Total 1,2-Dichloroethene	 				<u> </u>	_ _	_ _			<u> </u>				ាស់ ខេង្គ។ ស				rote, the i	Τ
-	10	Chloroform 1,2-Dichloroethane		 -		ļ	ļ	_ _	_ _			<u> </u>	·		. 11.5	see det	13.41	gar. S	48.5	Min see the	
-	11					<u> </u> :		_ _	- -			·			1 5	465-超過時時	36.47	1 15 1 1 1 1 1	Ski h	- Model	7
_	10	2-Butanone	 		···		II	<u>-</u> -	-∦-									<u> </u>			Τ
	:10	1,1,1-Trichloroethane				<u> </u>	<u> </u>		_ _							11.1				214.000	7
1_	10	Carbon Tetrachloride						_ _	_ _					<u> </u>							1
	10	Bromodichloromethane				<u> </u>	II		_ _			· · · .									7
-						<u> </u>	<u> </u>	_ _	_ _												T
			<u> </u>		ll <u></u>	l	ll	_ _	_ _							. :			Ţ		
L					<u> </u>			_ _	_ _							वर्ग देशन है	ð	- 11 · .	200	MAN BURNES	
						<u>. </u>								4 11	1:37.1	SE MANDA	inda.	of the second of the		Martine .	Z
		,							_ _	elta hi		111-11-11	1 - 1	is "\$ lat Jab."	1	WENNING	機能	*******	金		I
						<u> </u>				ा एनन				1	1:30	NEW PROPERTY.	444	I de cont	100		/博
										-										P	1
			1				H					<u> </u>									T

= Contract

Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

ATA SUMMARY FORM: VOLATILES

Site Name: HOFEMAN LANDFILL

SOIL SAMPLES

(µg/Kg)

Case #: 18347 Sampling Date(6): 612392

To calculate passage quantitation it limit

			<u> </u>											•			
	Sample No.	CKY37	CKY	38				Ĭ		1		T T		7	نس ب	7	
#	Dilution Factor	1.0	1.0											 		 	
٠	% Moisture	_ 8	12		-	. :			,			·		 		╂───	
	Location													∦		 	
-	,		Field	Dro.					•			1.000	N 95 .				
l	•	. ·		١,٠				,	: :								
	Ol couporus		et CK.	434				l		:							4.3
C		<u> </u>	I			_		İ					٠.,				. 4
	0 1,2-Dichtoropropane						T		7	Ï	T	 	T	╎──	T	}	
E E	O Cis-1,3-Dichtoropropene			11	1:		1-		-		-	 	1	 	 	 	- -
JI	O Trichloroethene			7 H		1	-1		1-	1	-	 	1-	H	-	 	- -
II—	O Dibromochloromethane					_	-		-	 	-	 	-	 	-	 	- -
16 .	0 1,1,2-Trichloroethane					-	-		-	 	-	 	1-	 	-	 	- -
1	0 Benzene					-	-		-	<u> </u>	-		·	 	-		- -
1	O Trans-1,3-Dichloropropene					-	-	ļ 	-	∦`		Section (Contract)		 	-	g. Milet.	
1	0 Bronoform						-	l	-	H		行級數學			77.5	SALE	- -
	4-Methyl-2-pentanone					-	-		-	H					-		-
1	0 2-Helfanone	1		1-1			-	l'———	-	H		l	 	ļ ———		 	1
1	0 Tetrachloroethene	1 -	_	·		-				l			 		-	 	1
	0 1,1,2,2,-Tetrachloroethane			-		-[]	-		-	 	-	 	<u> </u>	<u> </u>		∦	
1	0 Toluene			╂╌╌╌╢	·	-	-			 	┤—	<u></u>	 	 	-	<u> </u>	
T ₁	0 Chlorobenzene		<u> </u>	·		-	-		-	ļ		**			3 0	anti-Agrand	Ŀ
1	0 Ethylbenzene	-		┟──║╴		-	-		-		-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	52 a	्राक्ष्मण्डल	12:1	建筑地域。	13
1	0 Styrene	 	-	┟──║		-	-		-			1, 111					
1	0 Total Xylenes	∄	-	} ∦-			-		.		-						L
				╂──╟		-	-		.	ļ	-						L
		-		∤ -		-	·		-	<u> </u>	1	1 1 1					
		<u> </u>		. 		_ [[.		.	<u> </u>					DRIGINAL		T
		<u> </u>	-#	.		_#	.		.[8 ≅		1
 	_	 	_	 		-]					P		T
		 -		↓∦ .		_	.										
 		 		 .		_						ं व अधिक वि	31.5	1.5%	190 B	5.福州和梅姆克。	1
<u> </u>		JI J	II	11			1 1		1			可引起 網接 经	10.00	Friedrich		- STOCKER	

CRQL = Contract

Required

Quantitation

Limit

NARRATIVE

R CODE DEFIN

sed ----

DATA SUHMARY FORM: VOLATILES

sice Name: HOFFMAN LANDFILL

#: 18347 Sampling

SOIL SAMPLES (µg/Kg)

Date(4): 6|23|92

										<u> </u>						n differ to Little	<u> </u>		
	Simple No.	CKY	28	CKY		CKY	30	CKY		CISY	32	CKY	33	CKY	34	CKY	35	CKY	36
•	Dilution factor	1.6		1.0	·	1.0		1:♀	• •	ا ا		1.0		1.0		1.0	7	1.0	<u> </u>
	% Hoisture	19		13	<u>.</u>	40)	23	+	18				13		3		10	-
	Location	SEDI		SED 2		SFD3		SFD	4.	SI		52				54		55	
						l · ·								Field D	up.			e grade a	
ļ		ļ		ŀ									•	of CK	. U				нĹ
						<u> </u>							1 1 1	OF CK	738				
CRQL.	COMPOUND	<u> </u>		<u> </u>		<u> </u>		<u> </u>		1 1 1		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	11.5	HABINA	排為	1			
10	Chloromethane																T	Ĭ	T
10	Bromomethane	<u> </u>	_		<u> </u>								1					1	1
10	Vinyl Chloride														 	<u> </u>	1	1	1
10	Chloroethane																—	<u> </u>	1
10	Methylene Chloride	30	B	<u>7</u> &	BB	84	B	100	B	33	B	31	B	48 27	उ	87	18	L.	3 3
10	Acetone	مـــــــــــــــــــــــــــــــــــــ		32	B	42	B	110	В	23		22	B	27	B	27	B	62	
10	Carbon Disulfide	<u> </u>												, 41s.1		11		Machine	15
10	1,1-Dichloroethene	<u></u>			<u> </u>	<u> </u>	<u> </u>			111			1 ,	高级特殊		17		LEANS B	77
10	1,1.Dichloroethane	ll	.	<u> </u>									·		·			, , , ,	
10	Total 1,2-Dichloroethene																		1
10	Chloroform					·											1		1
10	1,2-Dichloroethane																1	1	1
10	2-Butanone							l							1		1-	1	-
10	1,1,1-Trichloroethane		1		Ī		·		1				<u> </u>		1-		1	1	1-
10	Carbon Tetrachloride		1		1						1		1-			 	1-	1	+
10	Bromodichloromethane		1		1	1		 			1		1		 	H	1	- 7	+
			1		1	1	T .						1	The contracts	dg	北海 的 。	38×31	iterat formal	-
				1		1		1					7.	## Liny	56 F	in:	# (#)	- Fall And Marie	
						1	1						1		 		-	E SOME IN BUILDING	15.
 			1	II		1							1		 		1-	1	- -
			1	H							1-		1		1-	∦ 	·	_ 0	+
 				1	1			l	<u> </u>			ļ		f		 	1-	<u> </u>	- -
1 		 	1-	 	<u> </u>	·	1	1	-		1	 	1		1-	 	1-	DRIGINA (Red)	十
 ∦		 	1-	 		 	1	1	 		1-	·	1	i deste di	-	-	-	Carried Street	
II		J	4	/l	<u> </u>	/\	· 1	!!	<u> </u>	<u> </u>	· I			·	<u> </u>	1		M	414

CRQL = Contract

Required

Quantitation

Limit

SEE NARRATIVE FOR CODE DEFINITIONS

revised 07/90

Name: HOFFMAN LANDFILL

SOIL SAMPLES

(µg/Kg)

#: 18347 Sampling Date(+): 6/23/92

To calculate a sample quantitation (CROL * Dilution Factor) / ((100 - % moisture)/100)

· Fr										1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
		Sample No.	CKY28	CKY29	CKY30	CKY31	CKY32	CKY33	CKY34	CKY35	
		Dilution Factor 1.0			1:v_c	1.0	1:0	(,0	1.0	1.0	1.0
-		X Hois ture	19	-17	40	~3	18	1	13.	3	10
	•	Location	SFDI	SFD2	SFD3	SFD4	Sı	22			N 2 3
ı			}						Field Dup.		
		•							ofcky38		75.1
H	COO 1	20 0000000	1						LCKA38		
Į.	CRQL	COMPOLIND	ļ	:				<u> </u>	可以编辑基金等		Million of
	10	1,2-Dichtoropropane	<u> </u>	<u> </u>	, i				ราย ซอ าซัสส์ (หรัก)	s lagran on lagring	A STATE OF THE PARTY OF THE PAR
	10	Cis-1,3-Dichloropropene						1 1 3	CARE AND THE COLUMN TWO IS NOT	Marie Marie	
	10	Trichloroethene	<u> </u>								**************************************
	10	Dibromochloromethane						[-
ij.	10	1,1,2-Trichtoroethane									-
. [10	Senzene			,						
- 11	10	Trans-1,3-Dichloropropene									estigate a la
ı	10	Bronoform							Bankishing 1964s	Li Spiritara Maria	I CHARGE A
	10	4-Hethyl-2-pentanone					4 1 4 2 3	J. Brite Phil	MARCH 199	1445	
II.	10	2-Hekanone							the thinks the	1	
	10	Tetrachloroethene									25 (27) 24 (27)
	10	1,1,2,2,-Tetrachloroethane							100		A true in the
	10	Toluene									372 372
ı	10	Chlorobenzene									
	10	Ethylbenzene									
ı	10	Styrene	2								
I	10	Total Xylenes							- 1811 F		
H									14.網鐵電		A Brown to A Bar and A Bar
H									建筑	が開始による。 単独 た 単独という 単独	1996年 · 译
									1. 1.0 (1.0) (1.0) (1.0) (1.0)		14999- 中 1
H				 					 		
- 1			· .						├ ╼── ┟──╂	g	
										IR _{ic}	
I										(dg)	
-		***************************************			· 	<u> </u>		<u> </u>			

Limit

SEE NARRATIVE FOR CODE DEFINITIONS

DATA SUMMARY FORM: VOLATILES 1

ite Name: HOFFMAN LANDFILL

WATER SAMPLES

(µg/L)

Case #: 18347 Sampling Date(s): 6/23/92

To calculate sample quantitation limit:

(CRQL * Dilution Factor)

		E;;									<u> </u>						er Çe	: .		Ĵ
	Sample No.	CKYZ	4	CKY									.\				1		1	
	Dilution factor	1.0		1.0	<u> </u>		· O											÷		
	Location	SM3	<u> </u>	SW	<u>+</u>	<u> </u>	11		<u> </u>	· ———	<u> </u>							. 5		
		.									1	1111	4	4. 18 4		Que d	00 S 5 - 3	484	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 b3
				:						•		: ;								
CROL	COMPOUND																			
10	Chloromethane										Ï	丁一	1		ή	1	j —	T	<u>"</u>	T
10	Bromomethane	<u> </u>									H					1			1 4 .	
10	*Vinyl Chloride	<u> </u>			<u> </u>									_	6,1,4				jihesis, e.,	
10	Chloroethane							·				. :			alas di lind	3:8	37-4151 6-67	- 18, 11	IMA PER	
10	*Methylene Chloride	10	3	3	E		5	<u>B</u>						₹:	of tagethy				des S	- -
10	Acetone	121	13	- 11	E		9	B			<u> </u>				2.50夏桂		<u> </u>		8731. is	-
10	Carbon Disulfide		· .		<u>`</u>									4 1	Jene ber bei	174.2	Broken on S	· 使 1:	HARAB TOBA	1
10	*1,1-Dichloroethene				<u> </u>									4 .	独力的过	104.	are let a	40.	MS to free	17
10	1,1-Dichloroethane	<u> </u>		· · · · · · · · · · · · · · · · · · ·	<u> </u>	II														1
10	*Total 1,2-Dichloroethene	<u> </u>			<u> </u>	<u> </u>												1		1-
10	Chloroform		<u></u>				<u>.</u>											1		1-
10	*1,2-Dichtoroethane	<u> </u>				<u> </u>			<u> </u>										15000	1
10	*2-Butanone					li	<u></u>								Constitution of	7 : 67		i indi:	推图作品。	<u> </u>
10	*1,1,1-Trichloroethane				<u></u>	l							si t	1.3.6.	- 民主機構体	414 4	13. 油油 2000	1	沙朗	
10	*Carbon Tetrachtoride			·	<u> </u>	ļ		<u> </u>										1		1
10	Bromodichloromethane			 _		ļ				<u> </u>		_								1
				<u> </u>		II		1	·		ч	l								1
		.			ļ	 							<u> </u>						States a	1
		 				 			 					7	. 部:海朝多年			45	Ministra	T .
		.			<u> </u>	<u> </u>				ننا			75	€ g (7		湖泊	海州神 州市	44		1
		<u> </u>		ļ	<u> </u>	 							4 17	. 1 i i i i	HEREN.	野村。	ENSTA	1		T
			<u> </u>	ļ	 										PARISH	F. 13	1991201 1911	进程:	A STATE OF	17
					ļ										in Page 1904.	Ç. 11	Lings Cours	4.8	MAN SOME	GR.
l				<u> </u>	l	JI				1:	1 g = 1			. <u> </u>	. tha . 提供的	大学学し	物解析点许	45156	10000	ďΩ.

CRQL = Contract

Required

Quantitation

Limit

To calculate sample quantitation

SEE NARRATIVE FOR CODE DEFINITIONS

te Name: HOFFMAN LANDETLL

WATER SAMPLES

Case #: 18347 Sampling Date(s): 6/23/92

Required

= Contract

Quantitation

Limit

(µg/L)

CKY24 CKY25 Sample No. Michael & Burn 1.0 .0 Dilution Factor 1.0 SW3 SW4 Location CRQL COMPOUND *1,2-Dichloropropane 10 10 Cis-1,3-Dichloropropane 10 Trichloroethene 10 Dibromochloromethane 1. Mar. 1 10 1,1,2-Trichlorethane 2000年前他 Combon ! 10 *Benzene **阿里姆斯斯** 线 影響動脈 :14 3600 Trans-1,3-Dichloropropene 10 A 188 110 t 1.45 Mary to the 10. Bromoform 10 4-Methyl-2-pentanone 2000年16日 1392 11 Mary Miller 10 2-Hexanone 10 *Yetrachloroethene 1,1,2,2-Tetrachloroethane 10 *Toluene 10 *Chlorobenzene 10 *Ethylbenzene 4111 ·温姆斯 油水 10 *Styrene 131 8 24 10 *Total Xylenes 45.13 · 3. Ser Malife jedo. (花)

*Action

Level

Exists

SUMMARY FORM:

HOFFMAN LANDFILL

#: 12347 Sampling

CROL = Contract

WATER SAMPLES (µg/L)

Date(4): 62392

Quantitation

Required

Limit

To calculate

SEE NARRATIVE

quantitation

limit: factor)

CODE DEFINITIONS

			<u> </u>		·		:						100		1. 1	rain and	議員		ind i
		Sample No.	CKY14	CK		CKY		CKY	17			CKYI	9				22	CKY	2.3
-		Dilution Factor	1.0	نايــــا		100		1.0		1.0		1.0		1.0			٠	# 1·0) 1 ₇₂ 55
		Location	BLKI	6	191	CIM		لكلاث	3_	(412)	生_	GIMS	_	GW	Ь	SW		SW?	<u></u>
	· · .		Field Eby			Field! ofck	Dip.				·	efcky ofcky	••						
.						ofcic	/19				-	otcki	16						ist Endensi
	CRQL	COMPOUND					<u></u>				18.5	ti je abi	; ;; ; ,			Trail to the road			
	10	*1,2-Dichloropropane	<u> </u>	<u>: </u>	· ;	 								्रांत स्वतान्त्र				ent of a	\prod
	10	Cis-1,3-Dichloropropane		<u> </u>		<u> </u>	.					<u> </u>						(Brun)	1
	10	Trichloroethene				<u> </u>	ļ:	·			· ·			10 1994	97 Jr		90 34	PRINCIPAL INC.	
ĺ	10	Dibromochloromethane				 				i			· ·	the property	1.4	halon i	水流	福州和 种	4
	10	1,1,2-Trichlorethane	 		-			·				-	-		<u> </u>				. _
	10	Trans-1,3 Dichtoropropene	 	-	- -	· .		··				-						·	·
١	10	Bromoform	<u> </u>	1												= :		A#1, 1	-
١	10	4-Hethyl-2-pentanone		- II	1/5	 	VJ						. ;	St. SP. Inj.		io kan ke	海湖	PROFESSOR LA	
-	10	2-Hexanone									4		1 %	Prosition.	建筑		樂休	THE REAL PROPERTY.	4
1	10	*Tetrachloroethene												790	34		4	WHY!	1
ı	10	1,1,2,2-Tetrachloroethane												,					
-1	10	*Toluene			<u> </u>														1
	10	*Chtorobenzene	<u> </u>	_														N 150	
	10	*Ethylbenzene	_	-11	_		.							201			才.私.	Mark Control	
	10	*Styrene	 	.	<u> </u>	<u> </u>	-l							ing of Mad ⊈all		<i>1</i> 55	344	建筑市各级地区 的	
- 1	10	*Total Xylenes	<u> </u>	-	_		-				·	<u> </u>	1 3 3	相下海州州	27 ju ju	法。機性的政策。	本概	産品を表する	1
		4	 	-	_ _				<u> </u>		<u> </u>			海川開制物	(Cash)	in the same	海(4)	A PROPERTY.	1
				_		.	-	 				 -		5 × 341 }	 		3	· 建铜 新沙田 文	30.
			.	-	_	.	.	 				<u> </u> -		1.1204.0		and the same		神神性法	1
			 	-	_		-	 	 		·	-		a refferen	1.64	e de la constante de la consta	System - System	THE RESERVE OF THE PERSON NAMED IN	. 3
,			· 		_	-	-	 		 		 -			 	l	-	 	
			∥			-∦	·		<u> </u>			-			 	[
٠	. 1		B I	11			4	11	l	H	l	II.		.	1	II .	1	4 .	1 .

*Action

Level

Exists

DATA SUMMARY

FORM:

VOLATILES

Site Namo: HOFFMAN LANDFILL

Required

Quantitation

Limit

WATER SAMPLE

(µg/L)

Case #: 18347 Sampling Date(+): 62397

To calculate

mple quantitation

ntitation limit: Dilution factor)

1	Sample No.	C-147	14	CKYI	7	C.K.	16	CKY		CKY	18	CK	19	CKY	/20	CES	100	CKY	2.3
	ilution Factor	1.0	>	1.0		100		1.0		1.0		1.0		1.0		1.0		1.0	
	Location	<u> </u>		GIWI		GW2	·	SOW		Simil	+	SW		GW		Sw	\overline{T}	Sw	
		Field D				Field of cx	Dup.		:			Field I of CK	yl6						
CRQL COMPOUND		<u> </u>	· •	<u> </u>		l											14		
10 Chloromethan	e				VJ		103		Ī		, .		14.1	4.15.1编数	-1015 1	engillances.	排稿。	ARRIVA	T.,
10 Bromomethane						-		:							·		-	Timerate of Sciences	-
10 *Vinyl Chlori	de													- 7	丁	 	1	ļ	
10 Chloroethane	·											· ·			1	 	·		-
10 Methylene Ch	loride	22	B		E	3	13	4	B	6	B	6	R	3	B	5	A		10
10 Acetone		15			- 2	15	불	<u>+</u>	BB	12	3 B	10	स्रक	11 (2.67)	14		TIME	144/2	8
10 Chrison Disul					·				1					· interitte	-35.4		一	排除上	P
10 *1,1-Dichloro		l												्या महीत्र	77) SE	100	N.
10 1,1-Dichloro		<u> </u>													1				-
10 *Total 1,2-Di	chloroethene	<u> </u>				3										}			
10 Chloroform	, ,				<u> </u>	1.4	J					4	3						
10 *1,2-Dichloro	ethane		<u> </u>			l						-							1-3
10 *2-Butanone	·																		1-
10 *1,1,1-Tricht			<u> </u>						,		- -		17.5	1 71814	93.00	1111	13.	我被心下。	
10 *Carbon Tetra											11-		16.5	(2)8 (4)		化学生活	· · · · · · · · · · · · · · · · · · ·	State of	- 22
10 Bromodichtor	omethane	<u> </u>	<u> </u>													1,		Transfer of	<u>.62</u>
		<u></u>	ļ					<u> </u>						2.3		P		£ '.	1
			<u> </u>	·		<u> </u>				· ·			11.3	19 38 (19	ः इति	B. Digger Co.	J (*)	HAMIS SHE	16.
		<u> </u>	<u> </u>								1			1.5	34	101	32.74	1-47-647	1-1
																			1-1
																 		क्र	1-
														1. 45.14.1		l		ORIGIN, Rest	
														The Constitution	4,2,3		113/1971	· Markey	1

MINOR PROBLEMS

- The semivolatile extractions of samples CKY28, CKY31, CKY34, CKY35, CKY36 and CKY38 were performed thirteen (13) days and sample CKY29 seventeen (17) days from the date of sample collection. Although no technical holding time for the semivolatile extraction of soil samples has been established, the technical holding time of seven (7) days for the aqueous samples has been exceeded by six (6) and ten (10) days, respectively, in these samples. The aqueous sample holding time was applied and, therefore, the quantitation limits in these samples were qualified "UJ" and positive results were qualified "J", except when superseded by the "B" qualifier in the affected samples. (See Traffic Report in Appendix F.)
- o Several compounds failed precision criteria in the volatile and semivolatile initial and continuing calibrations. The positive results were qualified "J" except when superseded by the "B" qualifier. The quantitation limits were qualified "UJ" when the QC limits were grossly exceeded (%RSD or %D greater than 50%), except for the acid compound 4-nitrophenol in the semivolatile fraction of sample CKY32, where it was superseded by the "R" qualifier. (See Table I in Appendix F.)
- o During the pesticide/PCB analyses, positive results have been flagged "P" on Form I's when the %D between the two columns was greater than 25%. These results were qualified "J" on the data summary forms.

NOTES

- O During the semivolatile analysis, sample CKY18MSD failed both surrogate and spike recovery criteria due to an extraction error and no reanalysis was performed. No action was taken. (See Case Narrative.)
- o In the semivolatile analyses, aqueous samples CKY16, CKY19 and CKY20 had one (1) and sample CKY18 had two (2) (one acid and one base) surrogate recoveries above the QC limits and soil samples CKY32MS, CKY32MSD and CKY34 had one (1) surrogate recovery below the QC limit, but greater than 10%. No action was taken. (See FORM-II SV-1 and FORM-II SV-2 in Appendix F.)
- o In the pesticide/PCB analyses, aqueous samples CKY14 and CKY26 and soil samples CKY30, CKY32 and CKY36 had one (1) each of their surrogate recoveries below the QC limits but greater than 10%. No action was taken. (See FORM II-PEST in Appendix F.)
- o The maximum concentration of all compounds found in the analyses of the field and laboratory method blanks are listed below. Samples with concentrations of common

laboratory contaminants less than ten times (<10X) the blank concentration or with concentrations of other contaminants less than five times (<5X) the blank concentration, have been qualified "B" on the data summary forms.

COMPOUND	CONCENTRATION
methylene chloride* acetone*	30 μg/Kg 31 μg/Kg
<pre>phenol diethylphthalate* butylbenzylphthalate* bis(2-ethylhexyl)phthalate*</pre>	3 J μg/L 1 J μg/L 6 J μg/L 10 μg/L
methoxychlor	0.59 J μg/Kg

^{*} Common Laboratory Contaminant

Samples CKY16/CKY19 and CKY34/CKY38 were the field duplicate pairs analyzed in the aqueous and solid samples, respectively. Their results and precision estimates, excluding the blank contaminants, are listed in the table below:

COMPOUND	CONCENTRA CKY16	TION (µg/L) CKY19	RPD
chloroform	4 J 🐠 🗀	4 J	. 0
		TION (μg/Kg)	
• •	CKY34	CKY38	
fluoranthene	39 Ј	61 J	44
pyrene	ND	55 Ĵ	IN
benzo(b)fluoranthene	ND	61 J	IN
benzo(a)pyrene	ND	61 J	IN
gamma-BHC	0.13 J	ND	IN
heptachlor	ND	0.094 J	IN
aldrin	0.58 J	0.37 J	44
heptachlor epoxide	0.30 J	0.26 J	14
endosulfan I	0.40 J	0.34 J	16
dieldrin	ND	0.33 J	IN
endrin	0.59 J	0.56 J	. 5
endosulfan II	0.31 J	ND	IN
4,4'-DDD	ND	1.3 J	IN
endrin ketone	0.15 J	ND	IN
alpha-chlordane	0.55 J	0.48 J	14
gamma-chlordane	0.67 J	0.51 J	27

RPD = Relative Percent Difference

ND = Not Detected

IN = Indeterminate

o Non-spiked compounds other than blank contaminants were detected in the pesticide/PCB analyses of samples CKY18, CKY32 and their matrix spike/matrix spike duplicate recoveries. Their results and precision estimates are as follows:

COMPOUND		₹RSD		
	CKY18	CKY18MS	CKY18MS	
endrin ketone	ND	0.0099 J	0.0074	J 24
		CONCENTRATION	(µg/Kg)	
	CKY32	CKY32MS	CKY32MS	<u>D</u>
benzo(b)fluoranthene	ND	ND	48	J IN
benzo(k)fluoranthene	ND	ND	48	
delta-BHC	ND	0.093 J	0.22	J 81+
heptachlor epoxide	ND	0.21 J	ND	IN
endrin ketone	0.66 J	ND	1.2	J 58+
benzo(b)fluoranthene	ND	ND	48	J IN
benzo(k)fluoranthene	ND	ND	48	J IN

RSD = Percent Relative Standard Deviation

+ = RPD instead of %RSD

ND = Not Detected
IN = indeterminate

- o In the semivolatile and pesticide/PCB analyses of soil samples, GPC cleanup was performed. The dilution factor of two (2) required by this procedure was accounted for in the analytical procedures used by the laboratory and, therefore, is not reflected in the data summary forms.
- o Sample weights other than thirty (30) grams were used in the semivolatile and pesticide/PCB analyses of several soil samples. The dilution factors on the data summary forms have been changed to reflect this variance, when significant.
- o During the semivolatile analyses of samples CKY29 and CKY38 benzo(b/k)fluoranthene isomers coeluted and their results have been flagged "X" on Form I's. (See case narrative in Appendix F.)
- o Tentatively Identified Compounds (TIC's) in Appendix D were reviewed and corrected during data validation. Several early eluting TICs were found during the semivolatile analyses due to the use of contaminated methylene chloride. Compounds identified as solvents, laboratory artifacts or blank contaminants were crossed of the TIC Form I's. (See case narrative in Appendix F.)

All data for case 18347 were reviewed in accordance with the ORIGINAL Functional Guidelines for Evaluating Organic Analyses with (Red) Modifications for use within Region III. The text of this report addresses only those problems affecting usability.

Attachments

- 1) Appendix A Glossary of Data Qualifiers
- 2) Appendix B Data Summary. These include:
 - (a) All positive results for target compounds with qualifier codes where applicable.
 - (b) All unusable detection limits (qualified "R").
- 3) Appendix C Results as reported by the Laboratory for all target compounds.
- 4) Appendix D Reviewed and corrected Tentatively Identified Compounds.
- 5) Appendix E Organic Regional Data Assessment Summary.
- 6) Appendix F Support Documentation.

HP029A02.HOF

